scispace - formally typeset
Search or ask a question

Showing papers by "Scott J. Goetz published in 2018"


Journal ArticleDOI
Anne D. Bjorkman1, Anne D. Bjorkman2, Isla H. Myers-Smith1, Sarah C. Elmendorf3, Sarah C. Elmendorf4, Sarah C. Elmendorf5, Signe Normand2, Nadja Rüger6, Pieter S. A. Beck, Anne Blach-Overgaard2, Daan Blok7, J. Hans C. Cornelissen8, Bruce C. Forbes9, Damien Georges1, Scott J. Goetz10, Kevin C. Guay11, Gregory H. R. Henry12, Janneke HilleRisLambers13, Robert D. Hollister14, Dirk Nikolaus Karger15, Jens Kattge16, Peter Manning, Janet S. Prevéy, Christian Rixen, Gabriela Schaepman-Strub17, Haydn J.D. Thomas1, Mark Vellend18, Martin Wilmking19, Sonja Wipf, Michele Carbognani20, Luise Hermanutz21, Esther Lévesque22, Ulf Molau23, Alessandro Petraglia20, Nadejda A. Soudzilovskaia24, Marko J. Spasojevic25, Marcello Tomaselli20, Tage Vowles23, Juha M. Alatalo26, Heather D. Alexander27, Alba Anadon-Rosell28, Alba Anadon-Rosell19, Sandra Angers-Blondin1, Mariska te Beest29, Mariska te Beest30, Logan T. Berner10, Robert G. Björk23, Agata Buchwal31, Agata Buchwal32, Allan Buras33, Katherine S. Christie34, Elisabeth J. Cooper35, Stefan Dullinger36, Bo Elberling37, Anu Eskelinen38, Anu Eskelinen39, Esther R. Frei15, Esther R. Frei12, Oriol Grau40, Paul Grogan41, Martin Hallinger, Karen A. Harper42, Monique M. P. D. Heijmans33, James I. Hudson, Karl Hülber36, Maitane Iturrate-Garcia17, Colleen M. Iversen43, Francesca Jaroszynska44, Jill F. Johnstone45, Rasmus Halfdan Jørgensen37, Elina Kaarlejärvi46, Elina Kaarlejärvi30, Rebecca A Klady12, Sara Kuleza45, Aino Kulonen, Laurent J. Lamarque22, Trevor C. Lantz47, Chelsea J. Little48, Chelsea J. Little17, James D. M. Speed49, Anders Michelsen37, Ann Milbau50, Jacob Nabe-Nielsen2, Sigrid Schøler Nielsen2, Josep M. Ninot28, Steven F. Oberbauer51, Johan Olofsson30, Vladimir G. Onipchenko52, Sabine B. Rumpf36, Philipp R. Semenchuk36, Philipp R. Semenchuk35, Rohan Shetti19, Laura Siegwart Collier21, Lorna E. Street1, Katharine N. Suding5, Ken D. Tape53, Andrew J. Trant21, Andrew J. Trant54, Urs A. Treier2, Jean-Pierre Tremblay55, Maxime Tremblay22, Susanna Venn56, Stef Weijers57, Tara Zamin41, Noémie Boulanger-Lapointe12, William A. Gould58, David S. Hik59, Annika Hofgaard, Ingibjörg S. Jónsdóttir60, Ingibjörg S. Jónsdóttir61, Janet C. Jorgenson62, Julia A. Klein63, Borgthor Magnusson, Craig E. Tweedie64, Philip A. Wookey65, Michael Bahn66, Benjamin Blonder67, Benjamin Blonder68, Peter M. van Bodegom24, Benjamin Bond-Lamberty69, Giandiego Campetella70, Bruno Enrico Leone Cerabolini71, F. Stuart Chapin53, William K. Cornwell72, Joseph M. Craine, Matteo Dainese, Franciska T. de Vries73, Sandra Díaz74, Brian J. Enquist75, Brian J. Enquist76, Walton A. Green77, Rubén Milla78, Ülo Niinemets79, Yusuke Onoda80, Jenny C. Ordoñez81, Wim A. Ozinga33, Wim A. Ozinga82, Josep Peñuelas40, Hendrik Poorter83, Hendrik Poorter84, Peter Poschlod85, Peter B. Reich86, Peter B. Reich87, Brody Sandel88, Brandon S. Schamp89, Serge N. Sheremetev90, Evan Weiher91 
University of Edinburgh1, Aarhus University2, Institute of Arctic and Alpine Research3, National Ecological Observatory Network4, University of Colorado Boulder5, Smithsonian Institution6, Lund University7, VU University Amsterdam8, University of Lapland9, Northern Arizona University10, Bigelow Laboratory For Ocean Sciences11, University of British Columbia12, University of Washington13, Grand Valley State University14, Swiss Federal Institute for Forest, Snow and Landscape Research15, Max Planck Society16, University of Zurich17, Université de Sherbrooke18, University of Greifswald19, University of Parma20, Memorial University of Newfoundland21, Université du Québec à Trois-Rivières22, University of Gothenburg23, Leiden University24, University of California, Riverside25, Qatar University26, Mississippi State University27, University of Barcelona28, Utrecht University29, Umeå University30, Adam Mickiewicz University in Poznań31, University of Alaska Anchorage32, Wageningen University and Research Centre33, Alaska Department of Fish and Game34, University of Tromsø35, University of Vienna36, University of Copenhagen37, Helmholtz Centre for Environmental Research - UFZ38, University of Oulu39, Spanish National Research Council40, Queen's University41, Saint Mary's University42, Oak Ridge National Laboratory43, University of Aberdeen44, University of Saskatchewan45, Vrije Universiteit Brussel46, University of Victoria47, Swiss Federal Institute of Aquatic Science and Technology48, Norwegian University of Science and Technology49, Research Institute for Nature and Forest50, Florida International University51, Moscow State University52, University of Alaska Fairbanks53, University of Waterloo54, Laval University55, Deakin University56, University of Bonn57, United States Forest Service58, Simon Fraser University59, University Centre in Svalbard60, University of Iceland61, United States Fish and Wildlife Service62, Colorado State University63, University of Texas at El Paso64, University of Stirling65, University of Innsbruck66, Rocky Mountain Biological Laboratory67, University of Oxford68, Pacific Northwest National Laboratory69, University of Camerino70, University of Insubria71, University of New South Wales72, University of Manchester73, National University of Cordoba74, University of Arizona75, Santa Fe Institute76, Harvard University77, King Juan Carlos University78, Estonian University of Life Sciences79, Kyoto University80, World Agroforestry Centre81, Radboud University Nijmegen82, Macquarie University83, Forschungszentrum Jülich84, University of Regensburg85, University of Minnesota86, University of Sydney87, Santa Clara University88, Algoma University89, Komarov Botanical Institute90, University of Wisconsin–Eau Claire91
04 Oct 2018-Nature
TL;DR: Biome-wide relationships between temperature, moisture and seven key plant functional traits across the tundra and over time show that community height increased with warming across all sites, whereas other traits lagged behind predicted rates of change.
Abstract: The tundra is warming more rapidly than any other biome on Earth, and the potential ramifications are far-reaching because of global feedback effects between vegetation and climate. A better understanding of how environmental factors shape plant structure and function is crucial for predicting the consequences of environmental change for ecosystem functioning. Here we explore the biome-wide relationships between temperature, moisture and seven key plant functional traits both across space and over three decades of warming at 117 tundra locations. Spatial temperature-trait relationships were generally strong but soil moisture had a marked influence on the strength and direction of these relationships, highlighting the potentially important influence of changes in water availability on future trait shifts in tundra plant communities. Community height increased with warming across all sites over the past three decades, but other traits lagged far behind predicted rates of change. Our findings highlight the challenge of using space-for-time substitution to predict the functional consequences of future warming and suggest that functions that are tied closely to plant height will experience the most rapid change. They also reveal the strength with which environmental factors shape biotic communities at the coldest extremes of the planet and will help to improve projections of functional changes in tundra ecosystems with climate warming.

425 citations


Journal ArticleDOI
07 Dec 2018-Science
TL;DR: It is revealed that animals can increase or decrease rates of biogeochemical processes, with a median change of 40% but ranging from 15 to 250% or more, and the key challenge, in light of these findings, is comprehensively accounting for spatially dynamic animal effects across landscapes.
Abstract: BACKGROUND Modern advances in remote-sensing technology are providing unprecedented opportunities to accurately measure the global distribution of carbon held in biomass within ecosystems. Such highly spatially resolved measures of biomass carbon are intended to provide an accurate inventory of global carbon storage within ecosystems. They are also needed to test the accuracy of carbon cycle models that predict how global changes that alter biogeochemical functions—such as carbon assimilation via photosynthesis, carbon losses via plant and microbial respiration, and organic matter deposition in soils and sediments—will affect net ecosystem carbon uptake and storage. Emerging ecological theory predicts that wild animals stand to play an important role in mediating these biogeochemical processes. Furthermore, many animal species roam widely across landscapes, creating a spatial dynamism that could regulate spatial patterning of vegetation biomass and carbon uptake and soil carbon retention. But such zoogeochemical effects are not measured by current remote-sensing approaches nor are they factored into carbon cycle models. Studies are now providing new quantitative insights into how the abundance, diversity, and movement of animal species across landscapes influence the nature and magnitude of zoogeochemical affects. These insights inform how to account for animals in remote-sensing applications and in carbon cycle models to more accurately predict carbon exchange between ecosystems and the atmosphere in the face of global environmental change. ADVANCES Zoogeochemical effects have been measured using manipulative experiments that exclude or add focal wild animal species or along landscape gradients where animal abundances or diversity vary naturally. Our review of these studies, which cover a wide diversity of taxa (vertebrates and invertebrates and large- and small-bodied organisms) and ecosystems, reveals that animals can increase or decrease rates of biogeochemical processes, with a median change of 40% but ranging from 15 to 250% or more. Moreover, models that embody zoogeochemical effects reveal the potential for considerable under- or overestimates in ecosystem carbon budgets if animal effects are not considered. The key challenge, in light of these findings, is comprehensively accounting for spatially dynamic animal effects across landscapes. We review new developments in spatial ecosystem ecology that offer the kind of analytical guidance needed to link animal movement ecology to geospatial patterning in ecosystem carbon uptake and storage. Considerations of animal movement will require highly resolved spatially explicit understanding of landscape features, including topography, climate, and the spatial arrangement of habitat patches and habitat connectivity within and among ecosystems across landscapes. We elaborate on advances in remote-sensing capabilities that can deliver these critical data. We further review new geospatial statistical methods that, when combined with remote-sensing data and spatial ecosystem modeling, offer the means to comprehensively understand and predict how zoogeochemical-driven landscape processes regulate spatial patterns in carbon distribution. OUTLOOK There is growing interest to slow climate change by enlisting ecological processes to recapture atmospheric carbon and store it within ecosystems. Wild animal species are rarely considered as part of the solution. Instead, it is often held that managing habitat space to conserve wild animals will conflict with carbon storage. Our integrative review offers a pathway forward for deciding when and how conserving or managing a diversity of animal species could in fact enhance ecosystem carbon uptake and storage. Such understanding informs international climate and biodiversity initiatives such as those described by the United Nations Convention on Biological Diversity and national biodiversity strategies and climate action plans. All of these initiatives require better resolution of how biodiversity effects on ecosystem structure and biogeochemical functioning will become altered by global change.

171 citations



Journal ArticleDOI
TL;DR: The approach and relationships developed here can be used as a basis for improving forest mortality models and monitoring systems and are broadly consistent across inventories, species, and spatial resolutions, although the utility of coarse-scale imagery in the heterogeneous aspen parkland was limited.
Abstract: Increasing tree mortality from global change drivers such as drought and biotic infestations is a widespread phenomenon, including in the boreal zone where climate changes and feedbacks to the Earth system are relatively large. Despite the importance for science and management communities, our ability to forecast tree mortality at landscape to continental scales is limited. However, two independent information streams have the potential to inform and improve mortality forecasts: repeat forest inventories and satellite remote sensing. Time series of tree-level growth patterns indicate that productivity declines and related temporal dynamics often precede mortality years to decades before death. Plot-level productivity, in turn, has been related to satellite-based indices such as the Normalized difference vegetation index (NDVI). Here we link these two data sources to show that early warning signals of mortality are evident in several NDVI-based metrics up to 24 years before death. We focus on two repeat forest inventories and three NDVI products across western boreal North America where productivity and mortality dynamics are influenced by periodic drought. These data sources capture a range of forest conditions and spatial resolution to highlight the sensitivity and limitations of our approach. Overall, results indicate potential to use satellite NDVI for early warning signals of mortality. Relationships are broadly consistent across inventories, species, and spatial resolutions, although the utility of coarse-scale imagery in the heterogeneous aspen parkland was limited. Longer-term NDVI data and annually remeasured sites with high mortality levels generate the strongest signals, although we still found robust relationships at sites remeasured at a typical 5 year frequency. The approach and relationships developed here can be used as a basis for improving forest mortality models and monitoring systems.

69 citations


Journal ArticleDOI
TL;DR: Fisher et al. as discussed by the authors compiled feedback from ecosystem modeling teams on key data needs, which encompass carbon biogeochemistry, vegetation, permafrost, hydrology, and disturbance dynamics.
Abstract: Author(s): Fisher, JB; Hayes, DJ; Schwalm, CR; Huntzinger, DN; Stofferahn, E; Schaefer, K; Luo, Y; Wullschleger, SD; Goetz, S; Miller, CE; Griffith, P; Chadburn, S; Chatterjee, A; Ciais, P; Douglas, TA; Genet, H; Ito, A; Neigh, CSR; Poulter, B; Rogers, BM; Sonnentag, O; Tian, H; Wang, W; Xue, Y; Yang, ZL; Zeng, N; Zhang, Z | Abstract: NASA has launched the decade-long Arctic-Boreal Vulnerability Experiment (ABoVE). While the initial phases focus on field and airborne data collection, early integration with modeling activities is important to benefit future modeling syntheses. We compiled feedback from ecosystem modeling teams on key data needs, which encompass carbon biogeochemistry, vegetation, permafrost, hydrology, and disturbance dynamics. A suite of variables was identified as part of this activity with a critical requirement that they are collected concurrently and representatively over space and time. Individual projects in ABoVE may not capture all these needs, and thus there is both demand and opportunity for the augmentation of field observations, and synthesis of the observations that are collected, to ensure that science questions and integrated modeling activities are successfully implemented.

66 citations


Journal ArticleDOI
TL;DR: The results indicate that black spruce stands located at landscape positions with intermediate drainage contribute the most to C emissions, which offsets almost 50% of mean annual net ecosystem production in terrestrial ecosystems of Canada.
Abstract: Climate warming and drying is associated with increased wildfire disturbance and the emergence of megafires in North American boreal forests. Changes to the fire regime are expected to strongly increase combustion emissions of carbon (C) which could alter regional C balance and positively feedback to climate warming. In order to accurately estimate C emissions and thereby better predict future climate feedbacks, there is a need to understand the major sources of heterogeneity that impact C emissions at different scales. Here, we examined 211 field plots in boreal forests dominated by black spruce (Picea mariana) or jack pine (Pinus banksiana) of the Northwest Territories (NWT), Canada after an unprecedentedly large area burned in 2014. We assessed both aboveground and soil organic layer (SOL) combustion, with the goal of determining the major drivers in total C emissions, as well as to develop a high spatial resolution model to scale emissions in a relatively understudied region of the boreal forest. On average, 3.35 kg C m-2 was combusted and almost 90% of this was from SOL combustion. Our results indicate that black spruce stands located at landscape positions with intermediate drainage contribute the most to C emissions. Indices associated with fire weather and date of burn did not impact emissions, which we attribute to the extreme fire weather over a short period of time. Using these results, we estimated a total of 94.3 Tg C emitted from 2.85 Mha of burned area across the entire 2014 NWT fire complex, which offsets almost 50% of mean annual net ecosystem production in terrestrial ecosystems of Canada. Our study also highlights the need for fine-scale estimates of burned area that represent small water bodies and regionally specific calibrations of combustion that account for spatial heterogeneity in order to accurately model emissions at the continental scale.

59 citations


Journal ArticleDOI
TL;DR: In this article, the impact of prevailing social and ecological conditions on the potential equity outcome of REDD+ intervention at the local level is discussed, and a flexible adaptive management and equity-aware approach is recommended from the policy design to implementation, by anticipating and mitigating potential risks.

21 citations