scispace - formally typeset
Search or ask a question
Institution

Department of Biotechnology

GovernmentNew Delhi, India
About: Department of Biotechnology is a government organization based out in New Delhi, India. It is known for research contribution in the topics: Population & Silver nanoparticle. The organization has 4800 authors who have published 5033 publications receiving 82022 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: This first study relating FAK, actin remodeling, Glut-4 translocation and glucose uptake and their interrelationship in generating insulin resistance is reported, confirming that FAK regulates glucose uptake through actin reorganization in skeletal muscle.
Abstract: Focal Adhesion Kinase (FAK) is recently reported to regulate insulin resistance by regulating glucose uptake in C2C12 skeletal muscle cells. However, the underlying mechanism for FAK-mediated glucose transporter-4 translocation (Glut-4), responsible for glucose uptake, remains unknown. Recently actin remodeling was reported to be essential for Glut-4 translocation. Therefore, we investigated whether FAK contributes to insulin-induced actin remodeling and harbor Glut-4 for glucose transport and whether downregulation of FAK affects the remodeling and causes insulin resistance. To address the issue we employed two approaches: gain of function by overexpressing FAK and loss of function by siRNA-mediated silencing of FAK. We observed that overexpression of FAK induces actin remodeling in skeletal muscle cells in presence of insulin. Concomitant to this Glut-4 molecules were also observed to be present in the vicinity of remodeled actin, as indicated by the colocalization studies. FAK-mediated actin remodeling resulted into subsequent glucose uptake via PI3K-dependent pathway. On the other hand FAK silencing reduced actin remodeling affecting Glut-4 translocation resulting into insulin resistance. The data confirms that FAK regulates glucose uptake through actin reorganization in skeletal muscle. FAK overexpression supports actin remodeling and subsequent glucose uptake in a PI3K dependent manner. Inhibition of FAK prevents insulin-stimulated remodeling of actin filaments resulting into decreased Glut-4 translocation and glucose uptake generating insulin resistance. To our knowledge this is the first study relating FAK, actin remodeling, Glut-4 translocation and glucose uptake and their interrelationship in generating insulin resistance.

39 citations

Journal ArticleDOI
TL;DR: Higher genomic stability, absence of known virulence factors and antibiotic resistance genes and close genomic relatedness with marketed probiotics makes E. faecium 17OM39 a potential probiotic candidate.
Abstract: Enterococcus faecium though commensal in the human gut, few strains provide a beneficial effect to humans as probiotics while few are responsible for the nosocomial infection. Comparative genomics of E. faecium can decipher the genomic differences responsible for probiotic, pathogenic and non-pathogenic properties. In this study, we compared E. faecium strain 17OM39 with a marketed probiotic, non-pathogenic non-probiotic (NPNP) and pathogenic strains. E. faecium 17OM39 was found to be closely related with marketed probiotic strain T110 based on core genome analysis. Strain 17OM39 was devoid of known vancomycin, tetracycline resistance and functional virulence genes. Moreover, E. faecium 17OM39 genome was found to be more stable due to the absence of frequently found transposable elements. Genes imparting beneficial functional properties were observed to be present in marketed probiotic T110 and 17OM39 strains. Genes associated with colonization and survival within gastrointestinal tract was also detected across all the strains. Beyond shared genetic features; this study particularly identified genes that are responsible for imparting probiotic, non-pathogenic and pathogenic features to the strains of E. faecium. Higher genomic stability, absence of known virulence factors and antibiotic resistance genes and close genomic relatedness with marketed probiotics makes E. faecium 17OM39 a potential probiotic candidate. The work presented here demonstrates that comparative genome analyses can be applied to large numbers of genomes, to find potential probiotic candidates.

39 citations

Journal ArticleDOI
TL;DR: A brief introduction to emerging and re-emerging pathogens, i.e., coronavirus in humans and animals, its taxonomic classification, genome organization, its replication, pathogenicity, impact on socioeconomic growth, and drugs associated with COVID-19 is presented.
Abstract: In December 2019, there was an outbreak of viral disease in Wuhan, China which raised the concern across the whole world. The viral disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) or novel coronavirus or COVID-19 (CoV-19) is known as a pandemic. After SARS-CoV and Middle East respiratory syndrome (MERS)–related CoV, COVID-19 is the third most pathogenic virus, hazardous to humans which have raised worries concerning the capacity of current security measures and the human services framework to deal with such danger. According to WHO, the mortality rate of COVID-19 exceeded that of SARS and MERS in view of which COVID-19 was declared as public health emergency of international concern. Coronaviruses are positive-sense RNA viruses with single stranded RNA and non-segmented envelopes. Recently, genome sequencing confirmed that COVID-19 is similar to SARS-CoV and bat coronavirus, but the major source of this pandemic outbreak, its transmission, and mechanisms related to its pathogenicity to humans are not yet known. In order to prevent the further pandemic and loss to humanity, scientists are studying the development of therapeutic drugs, vaccines, and strategies to cure the infections. In this review, we present a brief introduction to emerging and re-emerging pathogens, i.e., coronavirus in humans and animals, its taxonomic classification, genome organization, its replication, pathogenicity, impact on socioeconomic growth, and drugs associated with COVID-19.

39 citations

Journal ArticleDOI
TL;DR: Parkinson's disease (PD) is the second most common neurodegenerative disorder of the elderly, presenting primarily with symptoms of motor impairment as mentioned in this paper, which is diagnosed most commonly by clinical examination with a great degree of accuracy in specialized centers.
Abstract: Parkinson's disease (PD) is the second most common neurodegenerative disorder of the elderly, presenting primarily with symptoms of motor impairment. The disease is diagnosed most commonly by clinical examination with a great degree of accuracy in specialized centers. However, in some cases, non-classical presentations occur when it may be difficult to distinguish the disease from other types of degenerative or non-degenerative movement disorders with overlapping symptoms. The diagnostic difficulty may also arise in patients at the early stage of PD. Thus, a biomarker could help clinicians circumvent such problems and help them monitor the improvement in disease pathology during anti-parkinsonian drug trials. This review first provides a brief overview of PD, emphasizing, in the process, the important role of α-synuclein in the pathogenesis of the disease. Various attempts made by the researchers to develop imaging, genetic, and various biochemical biomarkers for PD are then briefly reviewed to point out the absence of a definitive biomarker for this disorder. In view of the overwhelming importance of α-synuclein in the pathogenesis, a detailed analysis is then made of various studies to establish the biomarker potential of this protein in PD; these studies measured total α-synuclein, oligomeric, and post-translationally modified forms of α-synuclein in cerebrospinal fluid, blood (plasma, serum, erythrocytes, and circulating neuron-specific extracellular vesicles) and saliva in combination with certain other proteins. Multiple studies also examined the accumulation of α-synuclein in various forms in PD in the neural elements in the gut, submandibular glands, skin, and the retina. The measurements of the levels of certain forms of α-synuclein in some of these body fluids or their components or peripheral tissues hold a significant promise in establishing α-synuclein as a definitive biomarker for PD. However, many methodological issues related to detection and quantification of α-synuclein have to be resolved, and larger cross-sectional and follow-up studies with controls and patients of PD, parkinsonian disorders, and non-parkinsonian movement disorders are to be undertaken.

39 citations

Journal ArticleDOI
TL;DR: A highly sensitive and selective electrochemical sandwich immunosensor based on chitosan (CH) modified nickel oxide (NiO) nanoparticles for the detection of Vibrio cholerae (Vc) using primary monoclonal antibodies and secondary antibodies conjugated with protein.
Abstract: We present a highly sensitive and selective electrochemical sandwich immunosensor (the analyte is “sandwiched” between two antibodies) based on chitosan (CH) modified nickel oxide (NiO) nanoparticles for the detection of Vibrio cholerae (Vc). The primary monoclonal antibodies specific to Vibrio cholerae (Ab-Vc) and bovine serum albumin (BSA) were co-immobilized on a CH–NiO surface deposited onto an indium tin oxide (ITO) coated glass electrode. The specific binding of Ab-Vc towards Vc was confirmed by interaction of secondary antibodies conjugated with protein [horse radish peroxidase (HRP)], with varying concentrations of hydrogen peroxide (H2O2), via electrochemical as well as optical techniques. The CH–NiO/ITO and Ab-Vc/CH–NiO/ITO electrodes have been characterized using X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, high-resolution transmission electron microscopy and electrochemical techniques. This immunoelectrode (BSA/Ab-Vc/CH–NiO/ITO) exhibits a detection range of 20–700 ng mL−1 with a sensitivity of 0.644 μA ng mL−1 cm−2 and a low detection range of 0.108 ng mL−1 to Vc concentration. Besides this, the electrochemical response of the sandwich immunosensor (HRP–Ab-Vc/Vc/BSA/Ab-Vc/CH–NiO/ITO) towards H2O2 concentration is found to be linear in the range of 10–50 mM with excellent sensitivity (2.95 mA mM−1 cm−2).

38 citations


Authors

Showing all 4812 results

NameH-indexPapersCitations
Ashok Pandey9679643038
Klaus Becker7932027494
Bansi D. Malhotra7537519419
Ashwani Kumar6670318099
Sanjay K. Banerjee6279830044
M. Michael Gromiha5635210617
Swaran J.S. Flora5526711434
Mallappa Kumara Swamy5486414508
Pulok K. Mukherjee5429610873
Mukesh Doble513649826
Jaya Narayan Sahu491579569
Pradeep Das4942610118
Jon R. Lorsch481177661
Rakesh Tuli471657497
Amit K. Goyal471575749
Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20231
202261
2021948
2020648
2019572
2018427