scispace - formally typeset
Search or ask a question
Institution

Nagoya Institute of Technology

EducationNagoya, Japan
About: Nagoya Institute of Technology is a education organization based out in Nagoya, Japan. It is known for research contribution in the topics: Thin film & Catalysis. The organization has 10766 authors who have published 19140 publications receiving 255696 citations. The organization is also known as: Nagoya Kōgyō Daigaku & Nitech.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a semi-infinite plate with triangular notch and a crack originating from a triangular notch is analyzed and an approximate expression of the stress intensity factor for some angles of a notch and crack length is presented.

70 citations

Journal ArticleDOI
TL;DR: The results indicate that both AFs and MTs play crucial roles in maintaining whole cell mechanical properties of SMCs, and that while AFs act as an internal tension generator, MTs acts as a tension reducer, and these contribute to intracellular force balance three dimensionally.
Abstract: The effects of actin filaments (AFs) and microtubules (MTs) on quasi-in situ tensile properties and intracellular force balance were studied in cultured rat aortic smooth muscle cells (SMCs). A SMC...

70 citations

Journal ArticleDOI
TL;DR: A neural network (NN) model is adopted to capture the complexity of lane changing, and large-scale trajectory data are employed for model estimation and validation, and the impact of heavy vehicles on driver's lane-changing decisions is quantitatively evaluated using the sensitivity analysis of the proposed NN model.

70 citations

Journal ArticleDOI
TL;DR: In this article, the effects of the variation in dissipation-range resolution on the accuracy of inertial-range statistics and intermittency in terms of the direct numerical simulations of homogeneous turbulence and passive-scalar turbulence by changing the spatial resolution up to 20483 grid points while maintaining a constant Reynolds number at Rλ ≃ 180 or ≃ 420 and Schmidt number at Sc = 1.
Abstract: We examine the effects of the variation in dissipation-range resolution on the accuracy of inertial-range statistics and intermittency in terms of the direct numerical simulations of homogeneous turbulence and passive-scalar turbulence by changing the spatial resolution up to 20483 grid points while maintaining a constant Reynolds number at Rλ ≃ 180 or ≃ 420 and Schmidt number at Sc = 1. Although large fluctuations of the derivative fields depended strongly on Kmaxη and were underestimated when Kmaxη≃1, where Kmax is the maximum wavenumber in the computations and η is the mean Kolmogorov length, the behaviour of the spectra and the scaling exponents of the structure functions up to the eighth order in the range of scales greater than 10η was insensitive to variations in Kmaxη, even when Kmaxη≃1. The relationship between the spatial resolution and asymptotic tail of the probability density functions of the energy dissipation fields was studied using the multifractal model for dissipation, and the results were confirmed by comparison to the simulation data. Degradation of the statistics arises from modifications to the flow dynamics due to the finite wavenumber cutoff and the use of a coarser filter width for the data, which is obtained using a reasonable accuracy criterion for the flow dynamics. The effect of the former was less than that of the latter for the low-to-moderate-order statistics when Kmaxη≥1. We also discuss the universality of the inertial-range statistics with respect to variations in the dissipation-range characteristics.

70 citations

Journal ArticleDOI
TL;DR: In this paper, a comparative study characterizes two types of metallic and core-shell bimetallic nanoparticles prepared with modified polyol method, which consists of Pt and Pt-Pd coreshell nanocatalysts exhibiting polyhedral morphologies.

70 citations


Authors

Showing all 10804 results

NameH-indexPapersCitations
Luis M. Liz-Marzán13261661684
Hideo Hosono1281549100279
Shunichi Fukuzumi111125652764
Andrzej Cichocki9795241471
Kwok-Hung Chan9140644315
Kimoon Kim9041235394
Alex Martin8840636063
Manijeh Razeghi82104025574
Yuichi Ikuhara7597424224
Richard J. Cogdell7348023866
Masaaki Tanaka7186022443
Kiyotomi Kaneda6537813337
Yulin Deng6464116148
Motoo Shiro6472017786
Norio Shibata6357414469
Network Information
Related Institutions (5)
Tokyo Institute of Technology
101.6K papers, 2.3M citations

97% related

Waseda University
46.8K papers, 837.8K citations

94% related

Tokyo University of Science
24.1K papers, 438K citations

94% related

Tokyo Metropolitan University
25.8K papers, 724.2K citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202316
202272
2021631
2020718
2019701
2018764