scispace - formally typeset
Search or ask a question
Institution

Nagoya Institute of Technology

EducationNagoya, Japan
About: Nagoya Institute of Technology is a education organization based out in Nagoya, Japan. It is known for research contribution in the topics: Thin film & Catalysis. The organization has 10766 authors who have published 19140 publications receiving 255696 citations. The organization is also known as: Nagoya Kōgyō Daigaku & Nitech.


Papers
More filters
Patent
22 Feb 1990
TL;DR: A semiconductor wafer having an epitaxial GaAs layer, including a monocrystalline Si substrate having a major surface which is inclined at an off angle between 0.5° and 5° with respect to (100), is described in this paper.
Abstract: A semiconductor wafer having an epitaxial GaAs layer, including a monocrystalline Si substrate having a major surface which is inclined at an off angle between 0.5° and 5° with respect to (100); and at least one intermediate layer epitaxially grown on the major surface of the monocrystalline Si substrate, as a buffer layer for accommodating a lattice mismatch between the Si substrate and the epitaxial GaAs layer which is epitaxially grown on a major surface of the top layer of the at least one intermediate layer. The at least one intermediate layer may comprise one or mor GaP/GaAsP, GaAsP/GaAs superlattice layers. the wafer may be used to produce a seimconductor light emitting element which has a plurality of crystalline gaAs layers including a light emitting layer epitaxially grown on the GaAs layer on the intermediate layer. The wafer may also be used to produce a compound semiconductor device such as amplifying and switching elements, light emitting and receiving elements and photovolataic elements. Methods for producing the semiconductor wafer, light emitting element and compound semiconductor devices are also disclosed.

89 citations

Journal ArticleDOI
TL;DR: In this article, the Matsuoka-Nakai (SMP) criterion is introduced as a failure criterion for granular materials (J1, J2 and J3): the first, second and third effective stress invariants).

88 citations

Journal ArticleDOI
TL;DR: In this article, a crack-free AlGaN/GaN high-electron-mobility transistors (HEMTs) are presented on a 200 mm Si substrate by metal-organic chemical vapor deposition (MOCVD).
Abstract: Crack-free AlGaN/GaN high-electron-mobility transistors (HEMTs) grown on a 200 mm Si substrate by metal–organic chemical vapor deposition (MOCVD) is presented. As grown epitaxial layers show good surface uniformity throughout the wafer. The AlGaN/GaN HEMT with the gate length of 1.5 µm exhibits a high drain current density of 856 mA/mm and a transconductance of 153 mS/mm. The 3.8-µm-thick device demonstrates a high breakdown voltage of 1.1 kV and a low specific on-resistance of 2.3 mΩ cm2 for the gate–drain spacing of 20 µm. The figure of merit of our device is calculated as 5.3×108 V2 Ω-1 cm-2.

88 citations

Journal ArticleDOI
TL;DR: In this article, the authors investigated bipolar resistance switching on sputtered Pr0.7Ca0.3MnO3 sandwiched by Pt-and Ti-electrodes and found that negative differential resistance observed in the forming process originates from the motion of oxygen ions at the Ti/PCMO interface.
Abstract: Bipolar resistance switching was investigated on sputtered Pr0.7Ca0.3MnO3 (PCMO) sandwiched by Pt- and Ti-electrodes. Based on electrical conductivity measurements and a combination of electron energy loss spectroscopy analysis and transmission electron microscopy observation, we found that the negative differential resistance observed in the forming process originates from the motion of oxygen ions at the Ti/PCMO interface. We propose that the observed resistance switching is caused by an oxidation/reduction reaction at the interface.

88 citations


Authors

Showing all 10804 results

NameH-indexPapersCitations
Luis M. Liz-Marzán13261661684
Hideo Hosono1281549100279
Shunichi Fukuzumi111125652764
Andrzej Cichocki9795241471
Kwok-Hung Chan9140644315
Kimoon Kim9041235394
Alex Martin8840636063
Manijeh Razeghi82104025574
Yuichi Ikuhara7597424224
Richard J. Cogdell7348023866
Masaaki Tanaka7186022443
Kiyotomi Kaneda6537813337
Yulin Deng6464116148
Motoo Shiro6472017786
Norio Shibata6357414469
Network Information
Related Institutions (5)
Tokyo Institute of Technology
101.6K papers, 2.3M citations

97% related

Waseda University
46.8K papers, 837.8K citations

94% related

Tokyo University of Science
24.1K papers, 438K citations

94% related

Tokyo Metropolitan University
25.8K papers, 724.2K citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202316
202272
2021631
2020718
2019701
2018764