scispace - formally typeset
Search or ask a question
Institution

Nanjing University of Science and Technology

EducationNanjing, China
About: Nanjing University of Science and Technology is a education organization based out in Nanjing, China. It is known for research contribution in the topics: Catalysis & Computer science. The organization has 31581 authors who have published 36390 publications receiving 525474 citations. The organization is also known as: Nánjīng Lǐgōng Dàxué & Nánlǐgōng.


Papers
More filters
Journal ArticleDOI
TL;DR: An in situ method of nucleating gold or palladium nanoparticles in the presence of ethylene glycol as a reducing agent, while simultaneously reducing GO to graphene is described, enabling insight into the electronic pathways available to the graphene-nanoparticle system.
Abstract: Understanding energy transfer mechanisms in graphene derivatives is strongly motivated by the unusually interesting electronic properties of graphene, which can provide a template for the creation of novel nanostructured derivatives. From a synthetic point of view, it is highly attractive to envision being able to synthesize pristine graphene from precursors such as graphene oxide (GO). While this goal may be challenging over large length-scales, it is possible to generate regions of graphene at the nanoscale, confirmed by Raman spectroscopy or other methods. We describe an in situ method of nucleating gold or palladium nanoparticles in the presence of ethylene glycol as a reducing agent, while simultaneously reducing GO to graphene. The Au nanoparticles aid in spectroscopic characterization by both quenching fluorescence, allowing the graphene D and G bands to be quantified, and yielding a surface enhancement of about two orders of magnitude. We observe the excitation profile (488–785 nm) of the surface enhanced Raman spectrum (SERS) of graphene with Au nanoparticles adsorbed on the surface. Both the D and G bands display a resonance at approximately 593 nm (2.09 eV). This resonance may be interpreted as a combination of the plasmon resonance at 548 nm and a likely contribution from charge transfer as well. In addition, we observe a stiffening of the G band compared with that of graphene. The mechanism of the SERS, whether plasmonic or charge transfer-based, enables insight into the electronic pathways available to the graphene–nanoparticle system. We discuss our results in the context of several existing studies of graphene-based nanostructure derivatives.

165 citations

Journal ArticleDOI
TL;DR: In this paper, a 3-dimensional frequency selective rasorber (FSR) is proposed, which consists of a 2-D periodic array of parallel waveguides with a metallic post in the center.
Abstract: This paper introduces the concept, theory, and design of 3-D frequency selective rasorbers (FSRs), which have a transmission window transparent to the incident electromagnetic wave with two absorption bands located at both sides of the window. The proposed rasorber consists of a 2-D periodic array of parallel waveguides. The transmission characteristics with high selectivity are produced by lossless resonators implemented using a parallel waveguide with a metallic post in the center. On the other hand, the absorption bands are obtained by lossy resonators constructed by loading of lumped resistors at the entry port of short-circuited waveguides. Physical mechanism of the proposed FSRs is explained with the aid of an equivalent circuit model, and relevant design equations are formulated. Two prototypes of the designed FSRs are fabricated and measured as a proof of concept. The experimental results show that a bandwidth of 50% for the insertion loss less than 3 dB and two absorption bands with a high absorptance of around 90% can be achieved. Moreover, the simulated results also show that the proposed structure exhibits stable performance against the variation of the incident angle of an incoming plane wave.

165 citations

Journal ArticleDOI
TL;DR: In this article, a wideband circularly polarized (CP) annular-ring patch antenna with two proximity-coupled L-probe feeds orientated to have phases of 0deg and 90deg, using a broadband 90deg hybrid feed, is proposed.
Abstract: A wideband circularly polarized (CP) annular-ring patch antenna with two proximity-coupled L-probe feeds orientated to have phases of 0deg and 90deg, using a broadband 90deg hybrid feed, is proposed. It is found that the current distribution for CP operation can be improved by cutting a smaller concentric circular slot on the original larger circular patch to form an annular-ring patch. With such an arrangement, the proposed antenna delivers a wider axial ratio (AR) bandwidth than that of the conventional circular patch with the identical feeding technique. Considering the common overlapped bandwidth limited by the impedance, AR and gain, the proposed annular-ring patch antenna exhibits an effective bandwidth of 38% from 1.5 to 2.2 GHz, which is wider than the corresponding bandwidth of 29.7% from 1.35 to 1.82 GHz for the conventional circular patch. Moreover, the effective bandwidth of 38% for the proposed annular-ring antenna is also much wider than those for the other annular-ring patch antennas in the literature.

165 citations

Journal ArticleDOI
TL;DR: Comparative results demonstrate that the new adaptive total variation method based on a new edge indicator, named difference curvature, can avoid the staircase effect and better preserve fine details.

165 citations

Journal ArticleDOI
12 Mar 2019
TL;DR: In this article, a flexible and transparent EMI shielding film was successfully assembled via a room-temperature roll-to-roll production method, which can be readily applied in large-scale, transparent, and/or special requirements spaces (SRSs).
Abstract: A kind of pollution known as electromagnetic interference (EMI), which results from ubiquitous usage of various electronic communication and military radar equipment, has been receiving increasing attention recently. However, large-area EMI shielding on transparent and/or curved surfaces, including building windows, curved glass wall, and special requirements spaces (SRSs), remains hard to achieve. In this paper, a silver nanofiber (AgNF) based flexible and transparent EMI shielding film was successfully assembled via a room-temperature roll-to-roll production method. For transparent application scenario, AgNF with 89% transmittance in visible range and 1 μm thickness shows ~20 dB shielding efficiency (EMI SE). On the other hand, total shielding (>50 dB) is obtained when the thickness of AgNF increases to 10 μm, while its transmittance in visible range remains higher than 75%. Considering the facile and scale-free production technology, this material can be readily applied in large-scale, transparent, and/or SRSs EMI shielding.

165 citations


Authors

Showing all 31818 results

NameH-indexPapersCitations
Jian Yang1421818111166
Liming Dai14178182937
Hui Li1352982105903
Jian Zhou128300791402
Shuicheng Yan12381066192
Zidong Wang12291450717
Xin Wang121150364930
Xuan Zhang119153065398
Zhenyu Zhang118116764887
Xin Li114277871389
Zeshui Xu11375248543
Xiaoming Li113193272445
Chunhai Fan11270251735
H. Vincent Poor109211667723
Qian Wang108214865557
Network Information
Related Institutions (5)
Harbin Institute of Technology
109.2K papers, 1.6M citations

96% related

South China University of Technology
69.4K papers, 1.2M citations

94% related

University of Science and Technology of China
101K papers, 2.4M citations

94% related

Tsinghua University
200.5K papers, 4.5M citations

93% related

Tianjin University
79.9K papers, 1.2M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023107
2022594
20214,309
20203,990
20193,920
20183,211