scispace - formally typeset
Search or ask a question

Showing papers by "Nankai University published in 2018"


Journal ArticleDOI
14 Sep 2018-Science
TL;DR: In this article, a semi-empirical model analysis and using the tandem cell strategy to overcome the low charge mobility of organic materials, leading to a limit on the active-layer thickness and efficient light absorption was performed.
Abstract: Although organic photovoltaic (OPV) cells have many advantages, their performance still lags far behind that of other photovoltaic platforms. A fundamental reason for their low performance is the low charge mobility of organic materials, leading to a limit on the active-layer thickness and efficient light absorption. In this work, guided by a semi-empirical model analysis and using the tandem cell strategy to overcome such issues, and taking advantage of the high diversity and easily tunable band structure of organic materials, a record and certified 17.29% power conversion efficiency for a two-terminal monolithic solution-processed tandem OPV is achieved.

2,165 citations


Journal ArticleDOI
TL;DR: The dbCAN2 (http://cys.bios.niu.edu/dbCAN2) as mentioned in this paper is an updated meta server, which integrates three state-of-the-art tools for CAZome annotation: (i) HMMER search against the dbCAN HMM (hidden Markov model) database; (ii) DIAMOND search against CAZy pre-annotated CAZY sequence database and (iii) Hotpep search against conserved CAZys short peptide database.
Abstract: Complex carbohydrates of plants are the main food sources of animals and microbes, and serve as promising renewable feedstock for biofuel and biomaterial production. Carbohydrate active enzymes (CAZymes) are the most important enzymes for complex carbohydrate metabolism. With an increasing number of plant and plant-associated microbial genomes and metagenomes being sequenced, there is an urgent need of automatic tools for genomic data mining of CAZymes. We developed the dbCAN web server in 2012 to provide a public service for automated CAZyme annotation for newly sequenced genomes. Here, dbCAN2 (http://cys.bios.niu.edu/dbCAN2) is presented as an updated meta server, which integrates three state-of-the-art tools for CAZome (all CAZymes of a genome) annotation: (i) HMMER search against the dbCAN HMM (hidden Markov model) database; (ii) DIAMOND search against the CAZy pre-annotated CAZyme sequence database and (iii) Hotpep search against the conserved CAZyme short peptide database. Combining the three outputs and removing CAZymes found by only one tool can significantly improve the CAZome annotation accuracy. In addition, dbCAN2 now also accepts nucleotide sequence submission, and offers the service to predict physically linked CAZyme gene clusters (CGCs), which will be a very useful online tool for identifying putative polysaccharide utilization loci (PULs) in microbial genomes or metagenomes.

1,310 citations


Journal ArticleDOI
Fang Wan1, Linlin Zhang1, Xi Dai1, Xinyu Wang1, Zhiqiang Niu1, Jun Chen1 
TL;DR: A design with sodium vanadate hydrate as cathode is shown, allowing simultaneous proton and zinc-ion insertion/extraction and enhanced performance and the quasi-solid-state zinc/sodium vanadates hydrate battery is a good candidate for flexible energy storage device.
Abstract: Rechargeable aqueous zinc-ion batteries are promising energy storage devices due to their high safety and low cost. However, they remain in their infancy because of the limited choice of positive electrodes with high capacity and satisfactory cycling performance. Furthermore, their energy storage mechanisms are not well established yet. Here we report a highly reversible zinc/sodium vanadate system, where sodium vanadate hydrate nanobelts serve as positive electrode and zinc sulfate aqueous solution with sodium sulfate additive is used as electrolyte. Different from conventional energy release/storage in zinc-ion batteries with only zinc-ion insertion/extraction, zinc/sodium vanadate hydrate batteries possess a simultaneous proton, and zinc-ion insertion/extraction process that is mainly responsible for their excellent performance, such as a high reversible capacity of 380 mAh g–1 and capacity retention of 82% over 1000 cycles. Moreover, the quasi-solid-state zinc/sodium vanadate hydrate battery is also a good candidate for flexible energy storage device. Rechargeable zinc-ion batteries are promising energy storage devices but suffer from the limited choice of positive electrodes. Here Niu and co-workers show a design with sodium vanadate hydrate as cathode, allowing simultaneous proton and zinc-ion insertion/extraction and enhanced performance.

1,010 citations


Journal ArticleDOI
01 Jun 2018-Science
TL;DR: Flexible organic electronics are used to mimic the functions of a biological afferent nerve and construct a hybrid bioelectronic reflex arc to actuate muscles that has potential applications in neurorobotics and neuroprosthetics.
Abstract: The distributed network of receptors, neurons, and synapses in the somatosensory system efficiently processes complex tactile information. We used flexible organic electronics to mimic the functions of a sensory nerve. Our artificial afferent nerve collects pressure information (1 to 80 kilopascals) from clusters of pressure sensors, converts the pressure information into action potentials (0 to 100 hertz) by using ring oscillators, and integrates the action potentials from multiple ring oscillators with a synaptic transistor. Biomimetic hierarchical structures can detect movement of an object, combine simultaneous pressure inputs, and distinguish braille characters. Furthermore, we connected our artificial afferent nerve to motor nerves to construct a hybrid bioelectronic reflex arc to actuate muscles. Our system has potential applications in neurorobotics and neuroprosthetics.

856 citations


Journal ArticleDOI
TL;DR: The recent trends in the field of various Electrochemical Advanced Oxidation Processes (EAOPs) used for removing dyes from water medium are provided to indicate that EAOPs constitute a promising technology for the treatment of the dye contaminated effluents.

756 citations


Journal ArticleDOI
TL;DR: The excellent OER activity of sAu/NiFe LDH is ascribe to the charge redistribution of active Fe as well as its surrounding atoms causing by the neighboring sAU on NiFe oxyhydroxide stabilized by interfacial CO32- and H2O interfacing with LDH.
Abstract: A fundamental understanding of the origin of oxygen evolution reaction (OER) activity of transition-metal-based electrocatalysts, especially for single precious metal atoms supported on layered double hydroxides (LDHs), is highly required for the design of efficient electrocatalysts toward further energy conversion technologies. Here, we aim toward single-atom Au supported on NiFe LDH (sAu/NiFe LDH) to clarify the activity origin of LDHs system and a 6-fold OER activity enhancement by 0.4 wt % sAu decoration. Combining with theoretical calculations, the active behavior of NiFe LDH results from the in situ generated NiFe oxyhydroxide from LDH during the OER process. With the presence of sAu, sAu/NiFe LDH possesses an overpotential of 0.21 V in contrast to the calculated result (0.18 V). We ascribe the excellent OER activity of sAu/NiFe LDH to the charge redistribution of active Fe as well as its surrounding atoms causing by the neighboring sAu on NiFe oxyhydroxide stabilized by interfacial CO32– and H2O in...

724 citations


Journal ArticleDOI
TL;DR: This work reports a new metal-free phosphorene/g-C3 N4 photocatalyst and sheds lights on the design and fabrication of 2D/2D VDW heterojunction for applications in catalysis, electronics, and optoelectronics.
Abstract: The generation of green hydrogen (H2 ) energy using sunlight is of great significance to solve the worldwide energy and environmental issues. Particularly, photocatalytic H2 production is a highly promising strategy for solar-to-H2 conversion. Recently, various heterostructured photocatalysts with high efficiency and good stability have been fabricated. Among them, 2D/2D van der Waals (VDW) heterojunctions have received tremendous attention, since this architecture can promote the interfacial charge separation and transfer and provide massive reactive centers. On the other hand, currently, most photocatalysts are composed of metal elements with high cost, limited reserves, and hazardous environmental impact. Hence, the development of metal-free photocatalysts is desirable. Here, a novel 2D/2D VDW heterostructure of metal-free phosphorene/graphitic carbon nitride (g-C3 N4 ) is fabricated. The phosphorene/g-C3 N4 nanocomposite shows an enhanced visible-light photocatalytic H2 production activity of 571 µmol h-1 g-1 in 18 v% lactic acid aqueous solution. This improved performance arises from the intimate electronic coupling at the 2D/2D interface, corroborated by the advanced characterizations techniques, e.g., synchrotron-based X-ray absorption near-edge structure, and theoretical calculations. This work not only reports a new metal-free phosphorene/g-C3 N4 photocatalyst but also sheds lights on the design and fabrication of 2D/2D VDW heterojunction for applications in catalysis, electronics, and optoelectronics.

683 citations


Journal ArticleDOI
TL;DR: Aqueous Zn-V2O5 battery chemistry is reported in this paper, which employs commercial V2O-5 cathode, Zn anode, and 3 M Zn(CF3SO3)2 electrolyte.
Abstract: We report an aqueous Zn–V2O5 battery chemistry employing commercial V2O5 cathode, Zn anode, and 3 M Zn(CF3SO3)2 electrolyte. We elucidate the Zn-storage mechanism in the V2O5 cathode to be that hydrated Zn2+ can reversibly (de)intercalate through the layered structure. The function of the co-intercalated H2O is revealed to be shielding the electrostatic interactions between Zn2+ and the host framework, accounting for the enhanced kinetics. In addition, the pristine bulk V2O5 gradually evolves into porous nanosheets upon cycling, providing more active sites for Zn2+ storage and thus rendering an initial capacity increase. As a consequence, a reversible capacity of 470 mAh g–1 at 0.2 A g–1 and a long-term cyclability with 91.1% capacity rentention over 4000 cycles at 5 A g–1 are achieved. The combination of the good battery performance, safety, scalable materials synthesis, and facile cell assembly indicates this aqueous Zn–V2O5 system is promising for stationary grid storage applications.

675 citations


Journal ArticleDOI
TL;DR: Batteries using quinone cathodes and metal anodes in aqueous electrolyte are reliable approaches for mass energy storage and an electrostatic potential computing method is developed to demonstrate that carbonyl groups are active centers of electrochemistry.
Abstract: Quinones, which are ubiquitous in nature, can act as sustainable and green electrode materials but face dissolution in organic electrolytes, resulting in fast fading of capacity and short cycle life. We report that quinone electrodes, especially calix[4]quinone (C4Q) in rechargeable metal zinc batteries coupled with a cation-selective membrane using an aqueous electrolyte, exhibit a high capacity of 335 mA h g-1 with an energy efficiency of 93% at 20 mA g-1 and a long life of 1000 cycles with a capacity retention of 87% at 500 mA g-1. The pouch zinc batteries with a respective depth of discharge of 89% (C4Q) and 49% (zinc anode) can deliver an energy density of 220 Wh kg-1 by mass of both a C4Q cathode and a theoretical Zn anode. We also develop an electrostatic potential computing method to demonstrate that carbonyl groups are active centers of electrochemistry. Moreover, the structural evolution and dissolution behavior of active materials during discharge and charge processes are investigated by operando spectral techniques such as IR, Raman, and ultraviolet-visible spectroscopies. Our results show that batteries using quinone cathodes and metal anodes in aqueous electrolyte are reliable approaches for mass energy storage.

623 citations


Journal ArticleDOI
TL;DR: In this article, the fundamental principles and applications of heterogeneous electrochemical wastewater treatment based on Fenton's chemistry reaction are discussed and the required features of good heterogeneous catalysts are discussed, followed by the mechanisms of catalytic activation of H2O2 to reactive oxygen species (ROS) especially hydroxyl radical ( OH) by heterogeneous catalyst in Hetero-EF system.
Abstract: This exhaustive review focuses on the fundamental principles and applications of heterogeneous electrochemical wastewater treatment based on Fenton’s chemistry reaction. The elementary equations involved in formation of hydroxyl radical in homogeneous electro-Fenton (EF) and photo electro-Fenton (PEF) processes was presented and the advantages of using insoluble solids as heterogeneous catalyst rather than soluble iron salts (heterogeneous electro-Fenton process) (Hetero-EF) was enumerated. Some of the required features of good heterogeneous catalysts were discussed, followed by the mechanisms of catalytic activation of H2O2 to reactive oxygen species (ROS) especially hydroxyl radical ( OH) by heterogeneous catalyst in Hetero-EF system. Extensive discussion on the two configuration of Hetero-EF system vis-a-vis added solid catalysts and functionalized cathodic materials were provided along with summaries of some relevant studies that are available in literature. The solid catalysts and the functionalized cathodic materials that have been utilized in Hetero-EF wastewater treatment were grouped into different classes and brief discussion on their synthesis route were given. Besides, the use of solid catalysts and iron-functionalized cathodic materials in bioelectrochemical system (BES) especially bioelectro-Fenton technology (BEF) using microbial fuel cells (MFCs) with concurrent electricity generation for Hetero-EF treatment of biorefractory organic pollutants was discussed. In the final part, emphasis was made on the challenges and future prospects of the Hetero-EF for wastewater treatment.

574 citations


Journal ArticleDOI
20 Jun 2018-Joule
TL;DR: In light of the targets set out by the Paris Climate Agreement and the global energy sector's ongoing transition from fossil fuels to renewables, the chemical industry is searching for innovative ways of reducing greenhouse gas emissions associated with the production of ammonia as discussed by the authors.

Journal ArticleDOI
TL;DR: In this paper, the authors summarize the recent progress in the development of MXene with emphasis on the applications to electrochemical energy storage and discuss the future perspective and challenges of the MXene-based materials.

Proceedings ArticleDOI
01 Jul 2018
TL;DR: In this article, a novel and effective E-measure (Enhanced-alignment measure) is proposed, which combines local pixel values with the image-level mean value in one term, jointly capturing imagelevel statistics and local pixel matching information.
Abstract: The existing binary foreground map (FM) measures to address various types of errors in either pixel-wise or structural ways. These measures consider pixel-level match or image-level information independently, while cognitive vision studies have shown that human vision is highly sensitive to both global information and local details in scenes. In this paper, we take a detailed look at current binary FM evaluation measures and propose a novel and effective E-measure (Enhanced-alignment measure). Our measure combines local pixel values with the image-level mean value in one term, jointly capturing image-level statistics and local pixel matching information. We demonstrate the superiority of our measure over the available measures on 4 popular datasets via 5 meta-measures, including ranking models for applications, demoting generic, random Gaussian noise maps, ground-truth switch, as well as human judgments. We find large improvements in almost all the meta-measures. For instance, in terms of application ranking, we observe improvementrangingfrom9.08% to 19.65% compared with other popular measures.

Journal ArticleDOI
TL;DR: An innovative strategy based on laser irradiation is described to controllably tune the relative concentrations of pyridinic and pyrrolic nitrogen dopants in the hybrid catalyst, i.e., NiCo/NLG-270, which manifests outstanding reversible oxygen electrocatalytic activities, leading to an overpotential different ΔE among the lowest value for highly efficient bifunctional catalysts.
Abstract: For many regenerative electrochemical energy-conversion systems, hybrid electrocatalysts comprising transition metal (TM) oxides and heteroatom-doped (e.g., nitrogen-doped) carbonaceous materials are promising bifunctional oxygen reduction reaction/oxygen evolution reaction electrocatalysts, whose enhanced electrocatalytic activities are attributed to the synergistic effect originated from the TM-N-C active sites. However, it is still ambiguous which configuration of nitrogen dopants, either pyridinic or pyrrolic N, when bonded to the TM in oxides, predominately contributes to the synergistic effect. Herein, an innovative strategy based on laser irradiation is described to controllably tune the relative concentrations of pyridinic and pyrrolic nitrogen dopants in the hybrid catalyst, i.e., NiCo2 O4 NPs/N-doped mesoporous graphene. Comparative studies reveal the dominant role of pyridinic-NCo bonding, instead of pyrrolic-N bonding, in synergistically promoting reversible oxygen electrocatalysis. Moreover, density functional theory calculations provide deep insights into the corresponding synergistic mechanism. The optimized hybrid, NiCo/NLG-270, manifests outstanding reversible oxygen electrocatalytic activities, leading to an overpotential different ΔE among the lowest value for highly efficient bifunctional catalysts. In a practical reversible Zn-air battery, NiCo/NLG-270 exhibits superior charge/discharge performance and long-term durability compared to the noble metal electrocatalysts.

Journal ArticleDOI
Yong Lu1, Qiu Zhang1, Lin Li1, Zhiqiang Niu1, Jun Chen1 
13 Dec 2018-Chem
TL;DR: In this paper, the authors present the working principles and fundamental properties of different types of organic electrode materials, including conductive polymers, organosulfur compounds, organic radicals, carbonyl compounds, and other emerging materials.

Journal ArticleDOI
01 Jun 2018
TL;DR: Luo et al. as mentioned in this paper reported a photocathode with a coaxial nanowire structure implementing a Cu2O/Ga2O3-buried p-n junction that achieves an external quantum yield for hydrogen generation close to 80%.
Abstract: Although large research efforts have been devoted to photoelectrochemical (PEC) water splitting in the past several decades, the lack of efficient, stable and Earth-abundant photoelectrodes remains a bottleneck for practical application. Here, we report a photocathode with a coaxial nanowire structure implementing a Cu2O/Ga2O3-buried p–n junction that achieves efficient light harvesting across the whole visible region to over 600 nm, reaching an external quantum yield for hydrogen generation close to 80%. With a photocurrent onset over +1 V against the reversible hydrogen electrode and a photocurrent density of ~10 mA cm−2 at 0 V versus the reversible hydrogen electrode, our electrode constitutes the best oxide photocathode for catalytic generation of hydrogen from sunlight known today. Conformal coating via atomic-layer deposition of a TiO2 protection layer enables stable operation exceeding 100 h. Using NiMo as the hydrogen evolution catalyst, an all Earth-abundant Cu2O photocathode was achieved with stable operation in a weak alkaline electrolyte. To show the practical impact of this photocathode, we constructed an all-oxide unassisted solar water splitting tandem device using state-of-the-art BiVO4 as the photoanode, achieving ~3% solar-to-hydrogen conversion efficiency. The generation of hydrogen fuel from water and visible light requires photoelectrodes that are inexpensive, stable and highly active. Now, Luo, Gratzel and co-workers report Cu2O photocathodes that reach these goals. Incorporation into an unassisted solar water splitting device gives ~3% solar-to-hydrogen conversion efficiency.

Journal ArticleDOI
TL;DR: In this article, a review summarizes the recent efforts on electrode materials with hierarchical structures, and discusses the effects of hierarchical structures on electrochemical performance in detail, including micro/nano and hetero/hierarchical structures characterized by ordered assembly of different sizes, phases, and/or pores.
Abstract: Since their successful commercialization in 1990s, lithium-ion batteries (LIBs) have been widely applied in portable digital products. The energy density and power density of LIBs are inadequate, however, to satisfy the continuous growth in demand. Considering the cost distribution in battery system, it is essential to explore cathode/anode materials with excellent rate capability and long cycle life. Nanometer-sized electrode materials could quickly take up and store numerous Li+ ions, afforded by short diffusion channels and large surface area. Unfortunately, low thermodynamic stability of nanoparticles results in electrochemical agglomeration and raises the risk of side reactions on electrolyte. Thus, micro/nano and hetero/hierarchical structures, characterized by ordered assembly of different sizes, phases, and/or pores, have been developed, which enable us to effectively improve the utilization, reaction kinetics, and structural stability of electrode materials. This review summarizes the recent efforts on electrode materials with hierarchical structures, and discusses the effects of hierarchical structures on electrochemical performance in detail. Multidimensional self-assembled structures can achieve integration of the advantages of materials with different sizes. Core/yolk-shell structures provide synergistic effects between the shell and the core/yolk. Porous structures with macro-, meso-, and micropores can accommodate volume expansion and facilitate electrolyte infiltration.

Journal ArticleDOI
Kaixiang Lei1, Chenchen Wang1, Luojia Liu1, Yuwen Luo1, Chaonan Mu1, Fujun Li1, Jun Chen1 
TL;DR: The Bi anode in combination with the dimethoxyethane-(DME) based electrolyte to deliver a remarkable capacity of ca.
Abstract: Potassium-ion batteries (KIBs) are plagued by a lack of materials for reversible accommodation of the large-sized K+ ion. Herein we present, the Bi anode in combination with the dimethoxyethane-(DME) based electrolyte to deliver a remarkable capacity of ca. 400 mAh g-1 and long cycle stability with three distinct two-phase reactions of Bi↔ KBi2 ↔K3 Bi2 ↔K3 Bi. These are ascribed to the gradually developed three-dimensional (3D) porous networks of Bi, which realizes fast kinetics and tolerance of its volume change during potassiation and depotassiation. The porosity is linked to the unprecedented movement of the surface Bi atoms interacting with DME molecules, as suggested by DFT calculations. A full KIB of Bi//DME-based electrolyte//Prussian blue of K0.72 Fe[Fe(CN)6 ] is demonstrated to present large energy density of 108.1 Wh kg-1 with average discharge voltage of 2.8 V and capacity retention of 86.5 % after 350 cycles.



Journal ArticleDOI
TL;DR: In this paper, spin spray layer-by-layer (SSLbL) is used to rapidly assemble Ti3C2Tx MXene-carbon nanotube (CNT) composite films and their potential for EMI shielding is demonstrated.
Abstract: Lightweight, flexible, and electrically conductive thin films with high electromagnetic interference (EMI) shielding effectiveness are highly desirable for next-generation portable and wearable electronic devices. Here, spin spray layer-by-layer (SSLbL) to rapidly assemble Ti3C2Tx MXene-carbon nanotube (CNT) composite films is shown and their potential for EMI shielding is demonstrated. The SSLbL technique allows strategic combinations of nanostructured materials and polymers providing a rich platform for developing hierarchical architectures with desirable cross-functionalities including controllable transparency, thickness, and conductivity, as well as high stability and flexibility. These semi-transparent LbL MXene-CNT composite films show high conductivities up to 130 S cm−1 and high specific shielding effectiveness up to 58 187 dB cm2 g−1, which is attributed to both the excellent electrical conductivity of the conductive fillers (i.e., MXene and CNT) and the enhanced absorption with the LbL architecture of the films. Remarkably, these values are among the highest reported values for flexible and semi-transparent composite thin films. This work could offer new solutions for next-generation EMI shielding challenges.

Posted Content
TL;DR: In this paper, a novel and effective E-measure (Enhanced-alignment measure) is proposed, which combines local pixel values with the image-level mean value in one term, jointly capturing imagelevel statistics and local pixel matching information.
Abstract: The existing binary foreground map (FM) measures to address various types of errors in either pixel-wise or structural ways. These measures consider pixel-level match or image-level information independently, while cognitive vision studies have shown that human vision is highly sensitive to both global information and local details in scenes. In this paper, we take a detailed look at current binary FM evaluation measures and propose a novel and effective E-measure (Enhanced-alignment measure). Our measure combines local pixel values with the image-level mean value in one term, jointly capturing image-level statistics and local pixel matching information. We demonstrate the superiority of our measure over the available measures on 4 popular datasets via 5 meta-measures, including ranking models for applications, demoting generic, random Gaussian noise maps, ground-truth switch, as well as human judgments. We find large improvements in almost all the meta-measures. For instance, in terms of application ranking, we observe improvementrangingfrom9.08% to 19.65% compared with other popular measures.

Journal ArticleDOI
Zhiqiang Luo1, Luojia Liu1, Jiaxin Ning1, Kaixiang Lei1, Yong Lu1, Fujun Li1, Jun Chen1 
TL;DR: A two-dimensional microporous covalent-organic framework, poly(imide-benzoquinone), via in-situ polymerization on graphene (PIBN-G) to function as a cathode material for lithium-ion batteries (LIBs), which enables large reversible specific capacities and retention after 300 cycles.
Abstract: A key challenge faced by organic electrodes is how to promote the redox reactions of functional groups to achieve high specific capacity and rate performance. Here, we report a two-dimensional (2D) microporous covalent-organic framework (COF), poly(imide-benzoquinone), via in situ polymerization on graphene (PIBN-G) to function as a cathode material for lithium-ion batteries (LIBs). Such a structure favors charge transfer from graphene to PIBN and full access of both electrons and Li+ ions to the abundant redox-active carbonyl groups, which are essential for battery reactions. This enables large reversible specific capacities of 271.0 and 193.1 mAh g-1 at 0.1 and 10 C, respectively, and retention of more than 86 % after 300 cycles. The discharging/charging process successively involves 8 Li+ and 2 Li+ in the carbonyl groups of the respective imide and quinone groups. The structural merits of PIBN-G will trigger more investigations into the designable and versatile COFs for electrochemistry.

Journal ArticleDOI
TL;DR: A new type of 2D perovskite using 2-thiophenemethylammonium (ThMA+) as a spacer cation was developed and high photovoltaic performance as well as enhanced stability in comparison with its 3D counterpart was demonstrated.
Abstract: Two-dimensional (2D) Ruddlesden–Popper perovskites have shown great potential for application in perovskite solar cells due to their appealing environmental stability However, 2D perovskites generally show poor photovoltaic performance Here, a new type of 2D perovskite using 2-thiophenemethylammonium (ThMA+) as a spacer cation was developed and high photovoltaic performance as well as enhanced stability in comparison with its 3D counterpart was demonstrated The use of the 2D perovskite (ThMA)2(MA)n−1PbnI3n+1 (n = 3) in deposited highly oriented thin films from N,N-dimethylformamide using a methylammonium chloride (MACl) assisted film-forming technique dramatically improves the efficiency of 2D perovskite photovoltaic devices from 174% to over 15%, which is the highest efficiency for 2D perovskite (n < 6) solar cells so far The enhanced performance of the 2D perovskite devices using MACl as additive is ascribed to the growth of a dense web of nanorod-like film with near-single-crystalline quality, in

Journal ArticleDOI
16 Oct 2018-Immunity
TL;DR: It is demonstrated that hepatocyte‐released HMGB1 mediates caspase‐11‐dependent pyroptosis and lethality in sepsis by delivering extracellular LPS into the cytosol of macrophages and endothelial cells, where LPS activates casp enzyme‐11.

Journal ArticleDOI
TL;DR: It is found that METTL3 promoted the expression of HBXIP through m6A modification, leading to accelerated cell proliferation in breast cancer, and this finding provides new insights into the mechanism of the mutual regulation betweenHBXIP andMETTL3 in the progression of breast cancer.

Journal ArticleDOI
Shuangyan Wu1, Yanna Lin1, Jingwei Liu1, Wei Shi1, Guang-Ming Yang1, Peng Cheng1 
TL;DR: In this paper, a new luminescent sensor based on a water stable lanthanide metal-organic framework (Ln-MOF) was proposed for carcinoid tumor detection.
Abstract: Serotonin (5-hydroxytryptamine, HT), a neurotransmitter, and its main metabolite 5-hydroxyindole-3-acetic acid (HIAA) are biomarkers for carcinoid tumors. They can be quantitatively detected by a new luminescent sensor based on a water stable lanthanide metal–organic framework (Ln-MOF). This Ln-MOF features a (3,4)-connected topology containing 1D channels occupied by lattice water molecules. Luminescent studies reveal that high luminescence quenching efficiency occurs upon the addition of HT and HIAA. The Ln-MOF also displays excellent sensitivity with fast response within 1 min, good reusability, and detection limits as low as 0.66 and 0.54 × 10−6m for HT and HIAA, respectively. In addition, the sensing function exhibits excellent selectivity even in the presence of other neurotransmitters and the main coexisting species in blood plasma and urine.

Journal ArticleDOI
18 Jul 2018-Joule
TL;DR: In this article, a new precursor pair, cesium acetate (CsAc) and hydrogen lead trihalide (HPbX3), was adopted to overcome the notorious solubility limitation for Cs precursors to fabricate high-quality α-CsPbI3 perovskite films with large film thickness (∼500nm).

Journal ArticleDOI
01 Jun 2018-Small
TL;DR: Benefiting from the interface nanosheets' structure with abundant defects, the FeS2 /CoS2 NSs show remarkable hydrogen evolution reaction (HER) performance with a low overpotential and superior stability for 80 h in 1.0 m KOH.
Abstract: Electrochemical water splitting to produce hydrogen and oxygen, as an important reaction for renewable energy storage, needs highly efficient and stable catalysts. Herein, FeS2 /CoS2 interface nanosheets (NSs) as efficient bifunctional electrocatalysts for overall water splitting are reported. The thickness and interface disordered structure with rich defects of FeS2 /CoS2 NSs are confirmed by atomic force microscopy and high-resolution transmission electron microscopy. Furthermore, extended X-ray absorption fine structure spectroscopy clarifies that FeS2 /CoS2 NSs with sulfur vacancies, which can further increase electrocatalytic performance. Benefiting from the interface nanosheets' structure with abundant defects, the FeS2 /CoS2 NSs show remarkable hydrogen evolution reaction (HER) performance with a low overpotential of 78.2 mV at 10 mA cm-2 and a superior stability for 80 h in 1.0 m KOH, and an overpotential of 302 mV at 100 mA cm-2 for the oxygen evolution reaction (OER). More importantly, the FeS2 /CoS2 NSs display excellent performance for overall water splitting with a voltage of 1.47 V to achieve current density of 10 mA cm-2 and maintain the activity for at least 21 h. The present work highlights the importance of engineering interface nanosheets with rich defects based on transition metal dichalcogenides for boosting the HER and OER performance.

Journal ArticleDOI
TL;DR: A systematic study of spinel ZnFex Co2-x O4 oxides toward the OER is presented and a highly active catalyst superior to benchmark IrO2 is developed and the distinctive OER activity is found to be dominated by the metal-oxygen covalency and an enlarged CoO covalencies by 10-30 at% Fe substitution is responsible for the activity enhancement.
Abstract: Cobalt-containing spinel oxides are promising electrocatalysts for the oxygen evolution reaction (OER) owing to their remarkable activity and durability. However, the activity still needs further improvement and related fundamentals remain untouched. The fact that spinel oxides tend to form cation deficiencies can differentiate their electrocatalysis from other oxide materials, for example, the most studied oxygen-deficient perovskites. Here, a systematic study of spinel ZnFex Co2-x O4 oxides (x = 0-2.0) toward the OER is presented and a highly active catalyst superior to benchmark IrO2 is developed. The distinctive OER activity is found to be dominated by the metal-oxygen covalency and an enlarged CoO covalency by 10-30 at% Fe substitution is responsible for the activity enhancement. While the pH-dependent OER activity of ZnFe0.4 Co1.6 O4 (the optimal one) indicates decoupled proton-electron transfers during the OER, the involvement of lattice oxygen is not considered as a favorable route because of the downshifted O p-band center relative to Fermi level governed by the spinel's cation deficient nature.