scispace - formally typeset
Search or ask a question
Institution

National Autonomous University of Mexico

EducationMexico City, Distrito Federal, Mexico
About: National Autonomous University of Mexico is a education organization based out in Mexico City, Distrito Federal, Mexico. It is known for research contribution in the topics: Population & Galaxy. The organization has 72868 authors who have published 127797 publications receiving 2285543 citations. The organization is also known as: UNAM & Universidad Nacional Autónoma de México.
Topics: Population, Galaxy, Catalysis, Thin film, Stars


Papers
More filters
Journal ArticleDOI
TL;DR: The database now distinguishes different allosteric conformations of regulatory proteins indicating the one active in binding and regulating the different promoters, and a new set of operon predictions has been incorporated.
Abstract: RegulonDB is a database on mechanisms of transcription regulation and operon organization in Escherichia coli K-12. The current version has considerably increased numbers of regulatory elements such as promoters, binding sites and terminators. The complete repertoire of known and predicted DNA-binding transcriptional regulators can be considered to be included in this version. The database now distinguishes different allosteric conformations of regulatory proteins indicating the one active in binding and regulating the different promoters. A new set of operon predictions has been incorporated. The relational design has been modified accordingly. Furthermore, a major improvement is a graphic display enabling browsing of the database with a Java-based graphic user interface with three zoom-levels connected to properties of each chromo­somal element. The purpose of these modifications is to make RegulonDB a useful tool and control set for tran­scriptome experiments. RegulonDB can be accessed on the web at the URL: http://www.cifn.unam.mx/Computational_Biology/regulondb/

276 citations

Journal ArticleDOI
TL;DR: The Gut Microbiota is a complex microbial community that is organized around a network of metabolic interdependencies as discussed by the authors, which is vital for normal development and functioning of the human body, especially for the priming and maturation of the adaptive immune system.
Abstract: Advances in culture-independent research techniques have led to an increased understanding of the gut microbiota and the role it plays in health and disease. The intestine is populated by a complex microbial community that is organized around a network of metabolic interdependencies. It is now understood that the gut microbiota is vital for normal development and functioning of the human body, especially for the priming and maturation of the adaptive immune system. Antibiotic use can have several negative effects on the gut microbiota, including reduced species diversity, altered metabolic activity, and the selection of antibiotic-resistant organisms, which in turn can lead to antibiotic-associated diarrhea and recurrent Clostridioides difficile infections. There is also evidence that early childhood exposure to antibiotics can lead to several gastrointestinal, immunologic, and neurocognitive conditions. The increase in the use of antibiotics in recent years suggests that these problems are likely to become more acute or more prevalent in the future. Continued research into the structure and function of the gut microbiota is required to address this challenge.

276 citations

Journal ArticleDOI
TL;DR: It is shown that at least some of the PEP saved during glucose transport, can be redirected into the aromatic pathway, and this process should increase the availability of PEP for other biosynthetic reactions.
Abstract: Glucose is the preferred substrate for certain fermentation processes. During its internalization and concomitant formation of glucose-6-phosphate through the glucose phosphotransferase system (PTS), one molecule of phosphoenolpyruvate (PEP) is consumed. Together with erythrose 4-phosphate (E4P), PEP is condensed to form 3-deoxy-D-arabino-heptulosonate 7-phosphate (DAHP), the first intermediate of the common segment of the aromatic pathway. From this metabolic route, several commercially important aromatic compounds can be obtained. We have selected Escherichia coli mutants that can transport glucose efficiently by a non-PTS uptake system. In theory, this process should increase the availability of PEP for other biosynthetic reactions. Using these mutants, in a background where the DAHP synthase (the enzyme that catalyzes the condensation of PEP and E4P into DAHP) was amplified, we were able to show that at least some of the PEP saved during glucose transport, can be redirected into the aromatic pathway. This increased carbon commitment to the aromatic pathway was enhanced still further upon amplification of the E. coli tktA gene that encodes for a transketolase involved in the biosynthesis of E4P.

276 citations

Journal ArticleDOI
TL;DR: In this paper, a very large array survey of 44 massive star-forming regions in the 44 GHz 70-61 A+ methanol transition was conducted, where 37 fields showed maser emission.
Abstract: We present a Very Large Array survey of 44 massive star-forming regions in the 44 GHz 70-61 A+ methanol transition; 37 fields showed maser emission. Thirty-one sources were also observed in the 23 GHz 92-101 A+ methanol line; two fields showed maser emission. Although the 44 GHz line is a class I maser, we find a large number of these masers in relatively close association with H II regions and water masers. Several sources show strong evidence for a correlation between 44 GHz masers and shocked molecular gas, supporting the interpretation that molecular outflows may give rise to class I maser emission. We provide maser positions with arcsecond accuracy that not only locate the masers with respect to other star formation phenomena, but also provide, for the stronger masers, phase referencing sources that can be used to calibrate future 7 mm (44 GHz) observations of these regions.

276 citations

Journal ArticleDOI
TL;DR: In this paper, a coarse-grained approximation for the Einstein-Maxwell theory that yields effective Maxwell equations in flat spacetime comprising Planck scale corrections is presented. But it is only in the magnetic sector which is briefly discussed.
Abstract: Within loop quantum gravity we construct a coarse-grained approximation for the Einstein-Maxwell theory that yields effective Maxwell equations in flat spacetime comprising Planck scale corrections. The corresponding Hamiltonian is defined as the expectation value of the electromagnetic term in the Einstein-Maxwell Hamiltonian constraint, regularized in the manner of Thiemann, with respect to a would-be semiclassical state. The resulting energy dispersion relations entail Planck scale corrections to those in flat spacetime. Both the helicity dependent contribution of Gambini and Pullin and, for a value of a parameter of our approximation, that of Ellis and co-workers are recovered. The electric-magnetic asymmetry in the regularization procedure yields nonlinearities only in the magnetic sector which are briefly discussed. Observations of cosmological gamma ray bursts might eventually lead to the needed accuracy to study some of these quantum gravity effects.

276 citations


Authors

Showing all 73617 results

NameH-indexPapersCitations
Richard Peto183683231434
Anton M. Koekemoer1681127106796
Rory Collins162489193407
Timothy C. Beers156934102581
Vivek Sharma1503030136228
Kjell Fuxe142147989846
Prashant V. Kamat14072579259
Carmen García139150396925
Harold A. Mooney135450100404
Efe Yazgan12898679041
Roberto Maiolino12781661724
Peter Nugent12775492988
William R. Miller12560172570
Nicholas A. Kotov12357455210
John C. Wingfield12250952291
Network Information
Related Institutions (5)
Complutense University of Madrid
90.2K papers, 2.1M citations

90% related

Spanish National Research Council
220.4K papers, 7.6M citations

90% related

Autonomous University of Madrid
52.8K papers, 1.6M citations

89% related

University of Granada
59.2K papers, 1.4M citations

89% related

University of Buenos Aires
50.9K papers, 1M citations

89% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20241
2023311
2022967
20217,482
20207,906
20197,107