scispace - formally typeset
Search or ask a question

Showing papers by "National Autonomous University of Mexico published in 2019"


Journal ArticleDOI
Kazunori Akiyama, Antxon Alberdi1, Walter Alef2, Keiichi Asada3  +403 moreInstitutions (82)
TL;DR: In this article, the Event Horizon Telescope was used to reconstruct event-horizon-scale images of the supermassive black hole candidate in the center of the giant elliptical galaxy M87.
Abstract: When surrounded by a transparent emission region, black holes are expected to reveal a dark shadow caused by gravitational light bending and photon capture at the event horizon. To image and study this phenomenon, we have assembled the Event Horizon Telescope, a global very long baseline interferometry array observing at a wavelength of 1.3 mm. This allows us to reconstruct event-horizon-scale images of the supermassive black hole candidate in the center of the giant elliptical galaxy M87. We have resolved the central compact radio source as an asymmetric bright emission ring with a diameter of 42 +/- 3 mu as, which is circular and encompasses a central depression in brightness with a flux ratio greater than or similar to 10: 1. The emission ring is recovered using different calibration and imaging schemes, with its diameter and width remaining stable over four different observations carried out in different days. Overall, the observed image is consistent with expectations for the shadow of a Kerr black hole as predicted by general relativity. The asymmetry in brightness in the ring can be explained in terms of relativistic beaming of the emission from a plasma rotating close to the speed of light around a black hole. We compare our images to an extensive library of ray-traced general-relativistic magnetohydrodynamic simulations of black holes and derive a central mass of M = (6.5 +/- 0.7) x 10(9) M-circle dot. Our radio-wave observations thus provide powerful evidence for the presence of supermassive black holes in centers of galaxies and as the central engines of active galactic nuclei. They also present a new tool to explore gravity in its most extreme limit and on a mass scale that was so far not accessible.

2,589 citations


Journal ArticleDOI
Daniel Conroy-Beam1, David M. Buss2, Kelly Asao2, Agnieszka Sorokowska3, Agnieszka Sorokowska4, Piotr Sorokowski3, Toivo Aavik5, Grace Akello6, Mohammad Madallh Alhabahba7, Charlotte Alm8, Naumana Amjad9, Afifa Anjum9, Chiemezie S. Atama10, Derya Atamtürk Duyar11, Richard Ayebare, Carlota Batres12, Mons Bendixen13, Aicha Bensafia14, Boris Bizumic15, Mahmoud Boussena14, Marina Butovskaya16, Marina Butovskaya17, Seda Can18, Katarzyna Cantarero19, Antonin Carrier20, Hakan Cetinkaya21, Ilona Croy4, Rosa María Cueto22, Marcin Czub3, Daria Dronova17, Seda Dural18, İzzet Duyar11, Berna Ertuğrul23, Agustín Espinosa22, Ignacio Estevan24, Carla Sofia Esteves25, Luxi Fang26, Tomasz Frackowiak3, Jorge Contreras Garduño27, Karina Ugalde González, Farida Guemaz, Petra Gyuris28, Mária Halamová29, Iskra Herak20, Marina Horvat30, Ivana Hromatko31, Chin Ming Hui26, Jas Laile Suzana Binti Jaafar32, Feng Jiang33, Konstantinos Kafetsios34, Tina Kavčič35, Leif Edward Ottesen Kennair13, Nicolas Kervyn20, Truong Thi Khanh Ha19, Imran Ahmed Khilji36, Nils C. Köbis37, Hoang Moc Lan19, András Láng28, Georgina R. Lennard15, Ernesto León22, Torun Lindholm8, Trinh Thi Linh19, Giulia Lopez38, Nguyen Van Luot19, Alvaro Mailhos24, Zoi Manesi39, Rocio Martinez40, Sarah L. McKerchar15, Norbert Meskó28, Girishwar Misra41, Conal Monaghan15, Emanuel C. Mora42, Alba Moya-Garófano40, Bojan Musil30, Jean Carlos Natividade43, Agnieszka Niemczyk3, George Nizharadze, Elisabeth Oberzaucher44, Anna Oleszkiewicz3, Anna Oleszkiewicz4, Mohd Sofian Omar-Fauzee45, Ike E. Onyishi10, Barış Özener11, Ariela Francesca Pagani38, Vilmante Pakalniskiene46, Miriam Parise38, Farid Pazhoohi47, Annette Pisanski42, Katarzyna Pisanski48, Katarzyna Pisanski3, Edna Lúcia Tinoco Ponciano, Camelia Popa49, Pavol Prokop50, Pavol Prokop51, Muhammad Rizwan, Mario Sainz52, Svjetlana Salkičević31, Ruta Sargautyte46, Ivan Sarmány-Schuller53, Susanne Schmehl44, Shivantika Sharad41, Razi Sultan Siddiqui54, Franco Simonetti55, Stanislava Stoyanova56, Meri Tadinac31, Marco Antonio Correa Varella57, Christin-Melanie Vauclair25, Luis Diego Vega, Dwi Ajeng Widarini, Gyesook Yoo58, Marta Zaťková29, Maja Zupančič59 
University of California, Santa Barbara1, University of Texas at Austin2, University of Wrocław3, Dresden University of Technology4, University of Tartu5, Gulu University6, Middle East University7, Stockholm University8, University of the Punjab9, University of Nigeria, Nsukka10, Istanbul University11, Franklin & Marshall College12, Norwegian University of Science and Technology13, University of Algiers14, Australian National University15, Russian State University for the Humanities16, Russian Academy of Sciences17, İzmir University of Economics18, University of Social Sciences and Humanities19, Université catholique de Louvain20, Ankara University21, Pontifical Catholic University of Peru22, Cumhuriyet University23, University of the Republic24, ISCTE – University Institute of Lisbon25, The Chinese University of Hong Kong26, National Autonomous University of Mexico27, University of Pécs28, University of Constantine the Philosopher29, University of Maribor30, University of Zagreb31, University of Malaya32, Central University of Finance and Economics33, University of Crete34, University of Primorska35, Institute of Molecular and Cell Biology36, University of Amsterdam37, Catholic University of the Sacred Heart38, VU University Amsterdam39, University of Granada40, University of Delhi41, University of Havana42, Pontifical Catholic University of Rio de Janeiro43, University of Vienna44, Universiti Utara Malaysia45, Vilnius University46, University of British Columbia47, University of Sussex48, Romanian Academy49, Comenius University in Bratislava50, Slovak Academy of Sciences51, University of Monterrey52, SAS Institute53, DHA Suffa University54, Pontifical Catholic University of Chile55, South-West University "Neofit Rilski"56, University of São Paulo57, Kyung Hee University58, University of Ljubljana59
TL;DR: This work combines this large cross-cultural sample with agent-based models to compare eight hypothesized models of human mating markets and finds that this cross-culturally universal pattern of mate choice is most consistent with a Euclidean model of mate preference integration.
Abstract: Humans express a wide array of ideal mate preferences. Around the world, people desire romantic partners who are intelligent, healthy, kind, physically attractive, wealthy, and more. In order for these ideal preferences to guide the choice of actual romantic partners, human mating psychology must possess a means to integrate information across these many preference dimensions into summaries of the overall mate value of their potential mates. Here we explore the computational design of this mate preference integration process using a large sample of n = 14,487 people from 45 countries around the world. We combine this large cross-cultural sample with agent-based models to compare eight hypothesized models of human mating markets. Across cultures, people higher in mate value appear to experience greater power of choice on the mating market in that they set higher ideal standards, better fulfill their preferences in choice, and pair with higher mate value partners. Furthermore, we find that this cross-culturally universal pattern of mate choice is most consistent with a Euclidean model of mate preference integration.

1,827 citations


Journal ArticleDOI
TL;DR: A new Resistomes & Variants module provides analysis and statistical summary of in silico predicted resistance variants from 82 pathogens and over 100 000 genomes, able to summarize predicted resistance using the information included in CARD, identify trends in AMR mobility and determine previously undescribed and novel resistance variants.
Abstract: The Comprehensive Antibiotic Resistance Database (CARD; https://card.mcmaster.ca) is a curated resource providing reference DNA and protein sequences, detection models and bioinformatics tools on the molecular basis of bacterial antimicrobial resistance (AMR). CARD focuses on providing high-quality reference data and molecular sequences within a controlled vocabulary, the Antibiotic Resistance Ontology (ARO), designed by the CARD biocuration team to integrate with software development efforts for resistome analysis and prediction, such as CARD's Resistance Gene Identifier (RGI) software. Since 2017, CARD has expanded through extensive curation of reference sequences, revision of the ontological structure, curation of over 500 new AMR detection models, development of a new classification paradigm and expansion of analytical tools. Most notably, a new Resistomes & Variants module provides analysis and statistical summary of in silico predicted resistance variants from 82 pathogens and over 100 000 genomes. By adding these resistance variants to CARD, we are able to summarize predicted resistance using the information included in CARD, identify trends in AMR mobility and determine previously undescribed and novel resistance variants. Here, we describe updates and recent expansions to CARD and its biocuration process, including new resources for community biocuration of AMR molecular reference data.

1,526 citations



Journal ArticleDOI
Kazunori Akiyama, Antxon Alberdi1, Walter Alef2, Keiichi Asada3  +251 moreInstitutions (56)
TL;DR: In this article, the authors present measurements of the properties of the central radio source in M87 using Event Horizon Telescope data obtained during the 2017 campaign, and find that >50% of the total flux at arcsecond scales comes from near the horizon and that the emission is dramatically suppressed interior to this region by a factor >10, providing direct evidence of the predicted shadow of a black hole.
Abstract: We present measurements of the properties of the central radio source in M87 using Event Horizon Telescope data obtained during the 2017 campaign. We develop and fit geometric crescent models (asymmetric rings with interior brightness depressions) using two independent sampling algorithms that consider distinct representations of the visibility data. We show that the crescent family of models is statistically preferred over other comparably complex geometric models that we explore. We calibrate the geometric model parameters using general relativistic magnetohydrodynamic (GRMHD) models of the emission region and estimate physical properties of the source. We further fit images generated from GRMHD models directly to the data. We compare the derived emission region and black hole parameters from these analyses with those recovered from reconstructed images. There is a remarkable consistency among all methods and data sets. We find that >50% of the total flux at arcsecond scales comes from near the horizon, and that the emission is dramatically suppressed interior to this region by a factor >10, providing direct evidence of the predicted shadow of a black hole. Across all methods, we measure a crescent diameter of 42 ± 3 μas and constrain its fractional width to be <0.5. Associating the crescent feature with the emission surrounding the black hole shadow, we infer an angular gravitational radius of GM/Dc2 = 3.8 ± 0.4 μas. Folding in a distance measurement of ${16.8}_{-0.7}^{+0.8}\,\mathrm{Mpc}$ gives a black hole mass of $M=6.5\pm 0.2{| }_{\mathrm{stat}}\pm 0.7{| }_{\mathrm{sys}}\times {10}^{9}\hspace{2pt}{M}_{\odot }$. This measurement from lensed emission near the event horizon is consistent with the presence of a central Kerr black hole, as predicted by the general theory of relativity.

1,024 citations


Journal ArticleDOI
Kazunori Akiyama, Antxon Alberdi1, Walter Alef2, Keiichi Asada3  +251 moreInstitutions (58)
TL;DR: In this article, the first Event Horizon Telescope (EHT) images of M87 were presented, using observations from April 2017 at 1.3 mm wavelength, showing a prominent ring with a diameter of ~40 μas, consistent with the size and shape of the lensed photon orbit encircling the "shadow" of a supermassive black hole.
Abstract: We present the first Event Horizon Telescope (EHT) images of M87, using observations from April 2017 at 1.3 mm wavelength. These images show a prominent ring with a diameter of ~40 μas, consistent with the size and shape of the lensed photon orbit encircling the "shadow" of a supermassive black hole. The ring is persistent across four observing nights and shows enhanced brightness in the south. To assess the reliability of these results, we implemented a two-stage imaging procedure. In the first stage, four teams, each blind to the others' work, produced images of M87 using both an established method (CLEAN) and a newer technique (regularized maximum likelihood). This stage allowed us to avoid shared human bias and to assess common features among independent reconstructions. In the second stage, we reconstructed synthetic data from a large survey of imaging parameters and then compared the results with the corresponding ground truth images. This stage allowed us to select parameters objectively to use when reconstructing images of M87. Across all tests in both stages, the ring diameter and asymmetry remained stable, insensitive to the choice of imaging technique. We describe the EHT imaging procedures, the primary image features in M87, and the dependence of these features on imaging assumptions.

952 citations


Journal ArticleDOI
13 Dec 2019-Science
TL;DR: The first integrated global-scale intergovernmental assessment of the status, trends, and future of the links between people and nature provides an unprecedented picture of the extent of the authors' mutual dependence, the breadth and depth of the ongoing and impending crisis, and the interconnectedness among sectors and regions.
Abstract: The human impact on life on Earth has increased sharply since the 1970s, driven by the demands of a growing population with rising average per capita income. Nature is currently supplying more materials than ever before, but this has come at the high cost of unprecedented global declines in the extent and integrity of ecosystems, distinctness of local ecological communities, abundance and number of wild species, and the number of local domesticated varieties. Such changes reduce vital benefits that people receive from nature and threaten the quality of life of future generations. Both the benefits of an expanding economy and the costs of reducing nature's benefits are unequally distributed. The fabric of life on which we all depend-nature and its contributions to people-is unravelling rapidly. Despite the severity of the threats and lack of enough progress in tackling them to date, opportunities exist to change future trajectories through transformative action. Such action must begin immediately, however, and address the root economic, social, and technological causes of nature's deterioration.

913 citations


Journal ArticleDOI
Kazunori Akiyama, Antxon Alberdi1, Walter Alef2, Keiichi Asada3  +259 moreInstitutions (62)
TL;DR: In this article, a large library of models based on general relativistic magnetohydrodynamic (GRMHD) simulations and synthetic images produced by GRS was constructed and compared with the observed visibilities.
Abstract: The Event Horizon Telescope (EHT) has mapped the central compact radio source of the elliptical galaxy M87 at 1.3 mm with unprecedented angular resolution. Here we consider the physical implications of the asymmetric ring seen in the 2017 EHT data. To this end, we construct a large library of models based on general relativistic magnetohydrodynamic (GRMHD) simulations and synthetic images produced by general relativistic ray tracing. We compare the observed visibilities with this library and confirm that the asymmetric ring is consistent with earlier predictions of strong gravitational lensing of synchrotron emission from a hot plasma orbiting near the black hole event horizon. The ring radius and ring asymmetry depend on black hole mass and spin, respectively, and both are therefore expected to be stable when observed in future EHT campaigns. Overall, the observed image is consistent with expectations for the shadow of a spinning Kerr black hole as predicted by general relativity. If the black hole spin and M87's large scale jet are aligned, then the black hole spin vector is pointed away from Earth. Models in our library of non-spinning black holes are inconsistent with the observations as they do not produce sufficiently powerful jets. At the same time, in those models that produce a sufficiently powerful jet, the latter is powered by extraction of black hole spin energy through mechanisms akin to the Blandford-Znajek process. We briefly consider alternatives to a black hole for the central compact object. Analysis of existing EHT polarization data and data taken simultaneously at other wavelengths will soon enable new tests of the GRMHD models, as will future EHT campaigns at 230 and 345 GHz.

808 citations


Journal ArticleDOI
Kazunori Akiyama, Antxon Alberdi1, Walter Alef2, Keiichi Asada3  +394 moreInstitutions (78)
TL;DR: The Event Horizon Telescope (EHT) as mentioned in this paper is a very long baseline interferometry (VLBI) array that comprises millimeter and submillimeter-wavelength telescopes separated by distances comparable to the diameter of the Earth.
Abstract: The Event Horizon Telescope (EHT) is a very long baseline interferometry (VLBI) array that comprises millimeter- and submillimeter-wavelength telescopes separated by distances comparable to the diameter of the Earth. At a nominal operating wavelength of ~1.3 mm, EHT angular resolution (λ/D) is ~25 μas, which is sufficient to resolve nearby supermassive black hole candidates on spatial and temporal scales that correspond to their event horizons. With this capability, the EHT scientific goals are to probe general relativistic effects in the strong-field regime and to study accretion and relativistic jet formation near the black hole boundary. In this Letter we describe the system design of the EHT, detail the technology and instrumentation that enable observations, and provide measures of its performance. Meeting the EHT science objectives has required several key developments that have facilitated the robust extension of the VLBI technique to EHT observing wavelengths and the production of instrumentation that can be deployed on a heterogeneous array of existing telescopes and facilities. To meet sensitivity requirements, high-bandwidth digital systems were developed that process data at rates of 64 gigabit s^(−1), exceeding those of currently operating cm-wavelength VLBI arrays by more than an order of magnitude. Associated improvements include the development of phasing systems at array facilities, new receiver installation at several sites, and the deployment of hydrogen maser frequency standards to ensure coherent data capture across the array. These efforts led to the coordination and execution of the first Global EHT observations in 2017 April, and to event-horizon-scale imaging of the supermassive black hole candidate in M87.

756 citations


Journal ArticleDOI
29 Mar 2019-Science
TL;DR: A global, quantitative assessment of the amphibian chytridiomycosis panzootic demonstrates its role in the decline of at least 501 amphibian species over the past half-century and represents the greatest recorded loss of biodiversity attributable to a disease.
Abstract: Anthropogenic trade and development have broken down dispersal barriers, facilitating the spread of diseases that threaten Earth's biodiversity. We present a global, quantitative assessment of the amphibian chytridiomycosis panzootic, one of the most impactful examples of disease spread, and demonstrate its role in the decline of at least 501 amphibian species over the past half-century, including 90 presumed extinctions. The effects of chytridiomycosis have been greatest in large-bodied, range-restricted anurans in wet climates in the Americas and Australia. Declines peaked in the 1980s, and only 12% of declined species show signs of recovery, whereas 39% are experiencing ongoing decline. There is risk of further chytridiomycosis outbreaks in new areas. The chytridiomycosis panzootic represents the greatest recorded loss of biodiversity attributable to a disease.

680 citations


Journal ArticleDOI
06 Mar 2019-Nature
TL;DR: It is demonstrated that excitonic bands in MoSe2/WS2 heterostructures can hybridize, resulting in a resonant enhancement of moiré superlattice effects, which underpin strategies for band-structure engineering in semiconductor devices based on van der Waals heterostructure.
Abstract: Atomically thin layers of two-dimensional materials can be assembled in vertical stacks that are held together by relatively weak van der Waals forces, enabling coupling between monolayer crystals with incommensurate lattices and arbitrary mutual rotation1,2. Consequently, an overarching periodicity emerges in the local atomic registry of the constituent crystal structures, which is known as a moire superlattice3. In graphene/hexagonal boron nitride structures4, the presence of a moire superlattice can lead to the observation of electronic minibands5–7, whereas in twisted graphene bilayers its effects are enhanced by interlayer resonant conditions, resulting in a superconductor–insulator transition at magic twist angles8. Here, using semiconducting heterostructures assembled from incommensurate molybdenum diselenide (MoSe2) and tungsten disulfide (WS2) monolayers, we demonstrate that excitonic bands can hybridize, resulting in a resonant enhancement of moire superlattice effects. MoSe2 and WS2 were chosen for the near-degeneracy of their conduction-band edges, in order to promote the hybridization of intra- and interlayer excitons. Hybridization manifests through a pronounced exciton energy shift as a periodic function of the interlayer rotation angle, which occurs as hybridized excitons are formed by holes that reside in MoSe2 binding to a twist-dependent superposition of electron states in the adjacent monolayers. For heterostructures in which the monolayer pairs are nearly aligned, resonant mixing of the electron states leads to pronounced effects of the geometrical moire pattern of the heterostructure on the dispersion and optical spectra of the hybridized excitons. Our findings underpin strategies for band-structure engineering in semiconductor devices based on van der Waals heterostructures9. Excitonic bands in MoSe2/WS2 heterostructures can hybridize, resulting in a resonant enhancement of moire superlattice effects.

Journal ArticleDOI
Kazunori Akiyama, Antxon Alberdi1, Walter Alef2, Keiichi Asada3  +243 moreInstitutions (60)
TL;DR: In this paper, the Event Horizon Telescope (EHT) 1.3 mm radio wavelength observations of the supermassive black hole candidate at the center of the radio galaxy M87 and the quasar 3C 279, taken during the 2017 April 5-11 observing campaign are presented.
Abstract: We present the calibration and reduction of Event Horizon Telescope (EHT) 1.3 mm radio wavelength observations of the supermassive black hole candidate at the center of the radio galaxy M87 and the quasar 3C 279, taken during the 2017 April 5–11 observing campaign. These global very long baseline interferometric observations include for the first time the highly sensitive Atacama Large Millimeter/submillimeter Array (ALMA); reaching an angular resolution of 25 μas, with characteristic sensitivity limits of ~1 mJy on baselines to ALMA and ~10 mJy on other baselines. The observations present challenges for existing data processing tools, arising from the rapid atmospheric phase fluctuations, wide recording bandwidth, and highly heterogeneous array. In response, we developed three independent pipelines for phase calibration and fringe detection, each tailored to the specific needs of the EHT. The final data products include calibrated total intensity amplitude and phase information. They are validated through a series of quality assurance tests that show consistency across pipelines and set limits on baseline systematic errors of 2% in amplitude and 1° in phase. The M87 data reveal the presence of two nulls in correlated flux density at ~3.4 and ~8.3 Gλ and temporal evolution in closure quantities, indicating intrinsic variability of compact structure on a timescale of days, or several light-crossing times for a few billion solar-mass black hole. These measurements provide the first opportunity to image horizon-scale structure in M87.

Journal ArticleDOI
TL;DR: The full public release of all data from the TNG100 and TNG300 simulations of the IllustrisTNG project is presented in this article, which includes a comprehensive model for galaxy formation physics, and each TNG simulation selfconsistently solves for the coupled evolution of dark matter, cosmic gas, luminous stars, and supermassive black holes from early time to the present day.
Abstract: We present the full public release of all data from the TNG100 and TNG300 simulations of the IllustrisTNG project. IllustrisTNG is a suite of large volume, cosmological, gravo-magnetohydrodynamical simulations run with the moving-mesh code Arepo. TNG includes a comprehensive model for galaxy formation physics, and each TNG simulation self-consistently solves for the coupled evolution of dark matter, cosmic gas, luminous stars, and supermassive black holes from early time to the present day, $z=0$ . Each of the flagship runs—TNG50, TNG100, and TNG300—are accompanied by halo/subhalo catalogs, merger trees, lower-resolution and dark-matter only counterparts, all available with 100 snapshots. We discuss scientific and numerical cautions and caveats relevant when using TNG. The data volume now directly accessible online is ∼750 TB, including 1200 full volume snapshots and ∼80,000 high time-resolution subbox snapshots. This will increase to ∼1.1 PB with the future release of TNG50. Data access and analysis examples are available in IDL, Python, and Matlab. We describe improvements and new functionality in the web-based API, including on-demand visualization and analysis of galaxies and halos, exploratory plotting of scaling relations and other relationships between galactic and halo properties, and a new JupyterLab interface. This provides an online, browser-based, near-native data analysis platform enabling user computation with local access to TNG data, alleviating the need to download large datasets.

Journal ArticleDOI
Arjun Dey, David J. Schlegel1, Dustin Lang2, Dustin Lang3  +162 moreInstitutions (52)
TL;DR: The DESI Legacy Imaging Surveys (http://legacysurvey.org/) as mentioned in this paper is a combination of three public projects (the Dark Energy Camera Legacy Survey, the Beijing-Arizona Sky Survey, and the Mayall z-band Legacy Survey) that will jointly image ≈14,000 deg2 of the extragalactic sky visible from the northern hemisphere in three optical bands (g, r, and z) using telescopes at the Kitt Peak National Observatory and the Cerro Tololo Inter-American Observatory.
Abstract: The DESI Legacy Imaging Surveys (http://legacysurvey.org/) are a combination of three public projects (the Dark Energy Camera Legacy Survey, the Beijing–Arizona Sky Survey, and the Mayall z-band Legacy Survey) that will jointly image ≈14,000 deg2 of the extragalactic sky visible from the northern hemisphere in three optical bands (g, r, and z) using telescopes at the Kitt Peak National Observatory and the Cerro Tololo Inter-American Observatory. The combined survey footprint is split into two contiguous areas by the Galactic plane. The optical imaging is conducted using a unique strategy of dynamically adjusting the exposure times and pointing selection during observing that results in a survey of nearly uniform depth. In addition to calibrated images, the project is delivering a catalog, constructed by using a probabilistic inference-based approach to estimate source shapes and brightnesses. The catalog includes photometry from the grz optical bands and from four mid-infrared bands (at 3.4, 4.6, 12, and 22 μm) observed by the Wide-field Infrared Survey Explorer satellite during its full operational lifetime. The project plans two public data releases each year. All the software used to generate the catalogs is also released with the data. This paper provides an overview of the Legacy Surveys project.

Journal ArticleDOI
TL;DR: The goal of this review is to expose that lactate is not only a secondary product of cellular metabolic waste of tumor cells, but also a key molecule involved in carcinogenesis as well as in tumor immune evasion.
Abstract: Tumor cells must generate sufficient ATP and biosynthetic precursors in order to maintain cell proliferation requirements. Otto Warburg showed that tumor cells uptake high amounts of glucose producing large volumes of lactate even in the presence of oxygen, this process is known as "Warburg effect or aerobic glycolysis." As a consequence of such amounts of lactate there is an acidification of the extracellular pH in tumor microenvironment, ranging between 6.0 and 6.5. This acidosis favors processes such as metastasis, angiogenesis and more importantly, immunosuppression, which has been associated to a worse clinical prognosis. Thus, lactate should be thought as an important oncometabolite in the metabolic reprogramming of cancer. In this review, we summarized the role of lactate in regulating metabolic microenvironment of cancer and discuss its relevance in the up-regulation of the enzymes lactate dehydrogenase (LDH) and monocarboxilate transporters (MCTs) in tumors. The goal of this review is to expose that lactate is not only a secondary product of cellular metabolic waste of tumor cells, but also a key molecule involved in carcinogenesis as well as in tumor immune evasion. Finally, the possible targeting of lactate production in cancer treatment is discussed.


Journal ArticleDOI
Roel Aaij, C. Abellán Beteta1, Bernardo Adeva2, Marco Adinolfi3  +877 moreInstitutions (60)
TL;DR: In this paper, a new pentaquark state, P_{c}(4312)+, was discovered with a statistical significance of 7.3σ in a data sample of Λ_{b}^{0}→J/ψpK^{-} decays, which is an order of magnitude larger than that previously analyzed by the LHCb Collaboration.
Abstract: A narrow pentaquark state, P_{c}(4312)^{+}, decaying to J/ψp, is discovered with a statistical significance of 7.3σ in a data sample of Λ_{b}^{0}→J/ψpK^{-} decays, which is an order of magnitude larger than that previously analyzed by the LHCb Collaboration. The P_{c}(4450)^{+} pentaquark structure formerly reported by LHCb is confirmed and observed to consist of two narrow overlapping peaks, P_{c}(4440)^{+} and P_{c}(4457)^{+}, where the statistical significance of this two-peak interpretation is 5.4σ. The proximity of the Σ_{c}^{+}D[over ¯]^{0} and Σ_{c}^{+}D[over ¯]^{*0} thresholds to the observed narrow peaks suggests that they play an important role in the dynamics of these states.

Journal ArticleDOI
06 Feb 2019-PeerJ
TL;DR: The kuenm R package is presented, a new set of tools for performing detailed development of ecological niche models using the platform Maxent in a reproducible way, and allows robust processes of model calibration, facilitating creation of final models based on model significance, performance, and simplicity.
Abstract: Background Ecological niche modeling is a set of analytical tools with applications in diverse disciplines, yet creating these models rigorously is now a challenging task. The calibration phase of these models is critical, but despite recent attempts at providing tools for performing this step, adequate detail is still missing. Here, we present the kuenm R package, a new set of tools for performing detailed development of ecological niche models using the platform Maxent in a reproducible way. Results This package takes advantage of the versatility of R and Maxent to enable detailed model calibration and selection, final model creation and evaluation, and extrapolation risk analysis. Best parameters for modeling are selected considering (1) statistical significance, (2) predictive power, and (3) model complexity. For final models, we enable multiple parameter sets and model transfers, making processing simpler. Users can also evaluate extrapolation risk in model transfers via mobility-oriented parity (MOP) metric. Discussion Use of this package allows robust processes of model calibration, facilitating creation of final models based on model significance, performance, and simplicity. Model transfers to multiple scenarios, also facilitated in this package, significantly reduce time invested in performing these tasks. Finally, efficient assessments of strict-extrapolation risks in model transfers via the MOP and MESS metrics help to prevent overinterpretation in model outcomes.


Journal ArticleDOI
D. S. Aguado, Romina Ahumada1, Andres Almeida2, Scott F. Anderson3  +244 moreInstitutions (78)
TL;DR: The Sloan Digital Sky Survey (SDSS) as discussed by the authors released data taken by the fourth phase of SDSS-IV across its first three years of operation (2014 July-2017 July).
Abstract: Twenty years have passed since first light for the Sloan Digital Sky Survey (SDSS). Here, we release data taken by the fourth phase of SDSS (SDSS-IV) across its first three years of operation (2014 July–2017 July). This is the third data release for SDSS-IV, and the 15th from SDSS (Data Release Fifteen; DR15). New data come from MaNGA—we release 4824 data cubes, as well as the first stellar spectra in the MaNGA Stellar Library (MaStar), the first set of survey-supported analysis products (e.g., stellar and gas kinematics, emission-line and other maps) from the MaNGA Data Analysis Pipeline, and a new data visualization and access tool we call "Marvin." The next data release, DR16, will include new data from both APOGEE-2 and eBOSS; those surveys release no new data here, but we document updates and corrections to their data processing pipelines. The release is cumulative; it also includes the most recent reductions and calibrations of all data taken by SDSS since first light. In this paper, we describe the location and format of the data and tools and cite technical references describing how it was obtained and processed. The SDSS website (www.sdss.org) has also been updated, providing links to data downloads, tutorials, and examples of data use. Although SDSS-IV will continue to collect astronomical data until 2020, and will be followed by SDSS-V (2020–2025), we end this paper by describing plans to ensure the sustainability of the SDSS data archive for many years beyond the collection of data.

Journal ArticleDOI
TL;DR: The literature is curated to keep RegulonDB up to date, and curation of ChIP and gSELEX experiments are initiated, and the Microbial Conditions Ontology with a controlled vocabulary for the minimal properties to reproduce an experiment contributes to integrate data from high throughput and classic literature.
Abstract: RegulonDB, first published 20 years ago, is a comprehensive electronic resource about regulation of transcription initiation of Escherichia coli K-12 with decades of knowledge from classic molecular biology experiments, and recently also from high-throughput genomic methodologies. We curated the literature to keep RegulonDB up to date, and initiated curation of ChIP and gSELEX experiments. We estimate that current knowledge describes between 10% and 30% of the expected total number of transcription factor- gene regulatory interactions in E. coli. RegulonDB provides datasets for interactions for which there is no evidence that they affect expression, as well as expression datasets. We developed a proof of concept pipeline to merge binding and expression evidence to identify regulatory interactions. These datasets can be visualized in the RegulonDB JBrowse. We developed the Microbial Conditions Ontology with a controlled vocabulary for the minimal properties to reproduce an experiment, which contributes to integrate data from high throughput and classic literature. At a higher level of integration, we report Genetic Sensory-Response Units for 200 transcription factors, including their regulation at the metabolic level, and include summaries for 70 of them. Finally, we summarize our research with Natural language processing strategies to enhance our biocuration work.

Journal ArticleDOI
TL;DR: In this article, a PGM-free nickel and nitrogen-doped porous carbon catalyst (Ni-N-C) was proposed to replace PGM catalysts in CO2-to-CO electrolyzers.
Abstract: The electrochemical CO2 reduction reaction (CO2RR) to pure CO streams in electrolyzer devices is poised to be the most likely process for near-term commercialization and deployment in the polymer industry. The reduction of CO2 to CO is electrocatalyzed under alkaline conditions on precious group metal (PGM) catalysts, such as silver and gold, limiting widespread application due to high cost. Here, we report on an interesting alternative, a PGM-free nickel and nitrogen-doped porous carbon catalyst (Ni–N–C), the catalytic performance of which rivals or exceeds those of the state-of-the-art electrocatalysts under industrial electrolysis conditions. We started from small scale CO2-saturated liquid electrolyte H-cell screening tests and moved to larger-scale CO2 electrolyzer cells, where the catalysts were deployed as Gas Diffusion Electrodes (GDEs) to create a reactive three-phase interface. We compared the faradaic CO yields and CO partial current densities of Ni–N–C catalysts to those of a Ag-based benchmark, and its Fe-functionalized Fe–N–C analogue under ambient pressures, temperatures and neutral pH bicarbonate flows. Prolonged electrolyzer tests were conducted at industrial current densities of up to 700 mA cm−2. Ni–N–C electrodes are demonstrated to provide CO partial current densities above 200 mA cm−2 and stable faradaic CO efficiencies around 85% for up to 20 hours (at 200 mA cm−2), unlike their Ag benchmarks. Density functional theory-based calculations of catalytic reaction pathways help offer a molecular mechanistic basis of the observed selectivity trends on Ag and M–N–C catalysts. Computations lend much support to our experimental hypothesis as to the critical role of N-coordinated metal ion, Ni–Nx, motifs as the catalytic active sites for CO formation. Apart from being cost effective, the Ni–N–C powder catalysts allow flexible operation under acidic, neutral, and alkaline conditions. This study demonstrates the potential of Ni–N–C and possibly other members of the M–N–C materials family to replace PGM catalysts in CO2-to-CO electrolyzers.

Journal ArticleDOI
TL;DR: The first known attempt to quantify the volume of managed aquifer recharge (MAR) at global scale, and to illustrate the advancement of all the major types of MAR and relate these to research and regulatory advancements is presented in this article.
Abstract: The last 60 years has seen unprecedented groundwater extraction and overdraft as well as development of new technologies for water treatment that together drive the advance in intentional groundwater replenishment known as managed aquifer recharge (MAR). This paper is the first known attempt to quantify the volume of MAR at global scale, and to illustrate the advancement of all the major types of MAR and relate these to research and regulatory advancements. Faced with changing climate and rising intensity of climate extremes, MAR is an increasingly important water management strategy, alongside demand management, to maintain, enhance and secure stressed groundwater systems and to protect and improve water quality. During this time, scientific research—on hydraulic design of facilities, tracer studies, managing clogging, recovery efficiency and water quality changes in aquifers—has underpinned practical improvements in MAR and has had broader benefits in hydrogeology. Recharge wells have greatly accelerated recharge, particularly in urban areas and for mine water management. In recent years, research into governance, operating practices, reliability, economics, risk assessment and public acceptance of MAR has been undertaken. Since the 1960s, implementation of MAR has accelerated at a rate of 5%/year, but is not keeping pace with increasing groundwater extraction. Currently, MAR has reached an estimated 10 km3/year, ~2.4% of groundwater extraction in countries reporting MAR (or ~1.0% of global groundwater extraction). MAR is likely to exceed 10% of global extraction, based on experience where MAR is more advanced, to sustain quantity, reliability and quality of water supplies.

Journal ArticleDOI
TL;DR: In a review of landscape-scale empirical studies, Fahrig as mentioned in this paper found that ecological responses to habitat fragmentation per se (fragmentation independent of habitat amount) were usually non-significant (>70% of responses) and that 76% of significant relationships were positive, with species abundance, occurrence, richness, and other response variables increasing with habitat fragmentation.

Journal ArticleDOI
Danaë M. A. Rozendaal, Frans Bongers1, T. Mitchell Aide2, Esteban Álvarez-Dávila, Nataly Ascarrunz, Patricia Balvanera3, Justin M. Becknell4, Tony Vizcarra Bentos5, Pedro H. S. Brancalion6, George A. L. Cabral7, Sofia Calvo-Rodriguez8, Jérôme Chave9, Ricardo Gomes César6, Robin L. Chazdon10, Robin L. Chazdon11, Robin L. Chazdon12, Richard Condit13, Jorn S. Dallinga1, Jarcilene S. Almeida-Cortez7, Ben H. J. de Jong, Alexandre Adalardo de Oliveira6, Julie S. Denslow14, Daisy H. Dent13, Daisy H. Dent15, Saara J. DeWalt16, Juan Manuel Dupuy, Sandra M. Durán8, Lo c Paul Dutrieux17, Lo c Paul Dutrieux1, Mário M. Espírito-Santo, María C. Fandiño, G. Wilson Fernandes18, Bryan Finegan19, Hernando García20, Noel Gonzalez, Vanessa Granda Moser, Jefferson S. Hall13, José Luis Hernández-Stefanoni, Stephen P. Hubbell13, Catarina C. Jakovac21, Catarina C. Jakovac12, Catarina C. Jakovac5, Alma Johanna Hernández20, André Braga Junqueira21, André Braga Junqueira1, André Braga Junqueira12, Deborah K. Kennard22, Denis Larpin, Susan G. Letcher23, Juan Carlos Licona, Edwin Lebrija-Trejos24, Erika Marin-Spiotta25, Miguel Martínez-Ramos3, Paulo Eduardo dos Santos Massoca5, Jorge A. Meave3, Rita C. G. Mesquita5, Francisco Mora3, Sandra Cristina Müller26, Rodrigo Muñoz3, Silvio Nolasco de Oliveira Neto27, Natalia Norden20, Yule Roberta Ferreira Nunes, Susana Ochoa-Gaona, Edgar Ortiz-Malavassi28, Rebecca Ostertag, Marielos Peña-Claros1, Eduardo A. Pérez-García3, Daniel Piotto, Jennifer S. Powers29, José Reinaldo Aguilar-Cano20, Susana Rodríguez-Buriticá20, Jorge Rodríguez-Velázquez3, Marco Antonio Romero-Romero3, Jorge Ruiz30, Jorge Ruiz31, Arturo Sanchez-Azofeifa8, Arlete Silva de Almeida32, Whendee L. Silver33, Naomi B. Schwartz34, William Wayt Thomas35, Marisol Toledo, Ma ia Uríarte34, Everardo Valadares de Sá Barreto Sampaio7, Michiel van Breugel13, Michiel van Breugel36, Michiel van Breugel37, Hans van der Wal38, Sebastião Venâncio Martins27, Maria das Dores Magalhães Veloso, Henricus Franciscus M. Vester39, Alberto Vicentini5, Ima Célia Guimarães Vieira32, Pedro Manuel Villa27, G. Bruce Williamson5, G. Bruce Williamson40, Kátia Janaina Zanini26, Jess K. Zimmerman41, Lourens Poorter1 
TL;DR: This work assesses how tree species richness and composition recover during secondary succession across gradients in environmental conditions and anthropogenic disturbance in an unprecedented multisite analysis for the Neotropics.
Abstract: Old-growth tropical forests harbor an immense diversity of tree species but are rapidly being cleared, while secondary forests that regrow on abandoned agricultural lands increase in extent. We assess how tree species richness and composition recover during secondary succession across gradients in environmental conditions and anthropogenic disturbance in an unprecedented multisite analysis for the Neotropics. Secondary forests recover remarkably fast in species richness but slowly in species composition. Secondary forests take a median time of five decades to recover the species richness of old-growth forest (80% recovery after 20 years) based on rarefaction analysis. Full recovery of species composition takes centuries (only 34% recovery after 20 years). A dual strategy that maintains both old-growth forests and species-rich secondary forests is therefore crucial for biodiversity conservation in human-modified tropical landscapes.

Journal ArticleDOI
TL;DR: Rice plants with fewer stomata are drought tolerant and more conservative in their water use, and they should perform better in the future when climate change is expected to threaten food security.
Abstract: Much of humanity relies on rice (Oryza sativa) as a food source, but cultivation is water intensive and the crop is vulnerable to drought and high temperatures. Under climate change, periods of reduced water availability and high temperature are expected to become more frequent, leading to detrimental effects on rice yields. We engineered the high-yielding rice cultivar ‘IR64’ to produce fewer stomata by manipulating the level of a developmental signal. We overexpressed the rice epidermal patterning factor OsEPF1, creating plants with substantially reduced stomatal density and correspondingly low stomatal conductance. Low stomatal density rice lines were more able to conserve water, using c. 60% of the normal amount between weeks 4 and 5 post germination. When grown at elevated atmospheric CO2, rice plants with low stomatal density were able to maintain their stomatal conductance and survive drought and high temperature (40°C) for longer than control plants. Low stomatal density rice gave equivalent or even improved yields, despite a reduced rate of photosynthesis in some conditions. Rice plants with fewer stomata are drought tolerant and more conservative in their water use, and they should perform better in the future when climate change is expected to threaten food security.

Journal ArticleDOI
TL;DR: The electrochemical CO2 reduction reaction (CO2RR) is a promising technology for converting waste CO2 into chemicals which could be used as feedstock for the chemical industry or as synthetic fuels.
Abstract: The electrochemical CO2 reduction reaction (CO2RR) is a promising technology for converting waste CO2 into chemicals which could be used as feedstock for the chemical industry or as synthetic fuels...

Journal ArticleDOI
TL;DR: Recent information on laccases from different sources, their structures and biochemical properties, mechanisms of action, and application in the bioremediation and biotransformation of contaminant molecules in water are provided.
Abstract: The global rise in urbanization and industrial activity has led to the production and incorporation of foreign contaminant molecules into ecosystems, distorting them and impacting human and animal health. Physical, chemical, and biological strategies have been adopted to eliminate these contaminants from water bodies under anthropogenic stress. Biotechnological processes involving microorganisms and enzymes have been used for this purpose; specifically, laccases, which are broad spectrum biocatalysts, have been used to degrade several compounds, such as those that can be found in the effluents from industries and hospitals. Laccases have shown high potential in the biotransformation of diverse pollutants using crude enzyme extracts or free enzymes. However, their application in bioremediation and water treatment at a large scale is limited by the complex composition and high salt concentration and pH values of contaminated media that affect protein stability, recovery and recycling. These issues are also associated with operational problems and the necessity of large-scale production of laccase. Hence, more knowledge on the molecular characteristics of water bodies is required to identify and develop new laccases that can be used under complex conditions and to develop novel strategies and processes to achieve their efficient application in treating contaminated water. Recently, stability, efficiency, separation and reuse issues have been overcome by the immobilization of enzymes and development of novel biocatalytic materials. This review provides recent information on laccases from different sources, their structures and biochemical properties, mechanisms of action, and application in the bioremediation and biotransformation of contaminant molecules in water. Moreover, we discuss a series of improvements that have been attempted for better organic solvent tolerance, thermo-tolerance, and operational stability of laccases, as per process requirements.

Journal ArticleDOI
M. Aguilar, L. Ali Cavasonza1, G. Ambrosi, Luísa Arruda  +233 moreInstitutions (31)
TL;DR: In this article, the authors presented precision results on cosmic-ray electrons in the energy range from 0.5 to 1.4, based on 28.1×106 electrons collected by the Alpha Magnetic Spectrometer on the International Space Station.
Abstract: Precision results on cosmic-ray electrons are presented in the energy range from 0.5 GeV to 1.4 TeV based on 28.1×106 electrons collected by the Alpha Magnetic Spectrometer on the International Space Station. In the entire energy range the electron and positron spectra have distinctly different magnitudes and energy dependences. The electron flux exhibits a significant excess starting from 42.1-5.2+5.4 GeV compared to the lower energy trends, but the nature of this excess is different from the positron flux excess above 25.2±1.8 GeV. Contrary to the positron flux, which has an exponential energy cutoff of 810-180+310 GeV, at the 5σ level the electron flux does not have an energy cutoff below 1.9 TeV. In the entire energy range the electron flux is well described by the sum of two power law components. The different behavior of the cosmic-ray electrons and positrons measured by the Alpha Magnetic Spectrometer is clear evidence that most high energy electrons originate from different sources than high energy positrons.

Journal ArticleDOI
Oliver Porth1, Oliver Porth2, Koushik Chatterjee2, Ramesh Narayan3  +260 moreInstitutions (64)
TL;DR: In this article, the authors compare the performance of nine GRMHD codes for the evolution of a magnetized accretion flow where turbulence is promoted by the magnetorotational instability.
Abstract: Recent developments in compact object astrophysics, especially the discovery of merging neutron stars by LIGO, the imaging of the black hole in M87 by the Event Horizon Telescope, and high- precision astrometry of the Galactic Center at close to the event horizon scale by the GRAVITY experiment motivate the development of numerical source models that solve the equations of general relativistic magnetohydrodynamics (GRMHD). Here we compare GRMHD solutions for the evolution of a magnetized accretion flow where turbulence is promoted by the magnetorotational instability from a set of nine GRMHD codes: Athena++, BHAC, Cosmos++, ECHO, H-AMR, iharm3D, HARM-Noble, IllinoisGRMHD, and KORAL. Agreement among the codes improves as resolution increases, as measured by a consistently applied, specially developed set of code performance metrics. We conclude that the community of GRMHD codes is mature, capable, and consistent on these test problems.