scispace - formally typeset
Search or ask a question

Showing papers by "National Cheng Kung University published in 2016"


Journal ArticleDOI
Daniel J. Klionsky1, Kotb Abdelmohsen2, Akihisa Abe3, Joynal Abedin4  +2519 moreInstitutions (695)
TL;DR: In this paper, the authors present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macro-autophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes.
Abstract: In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. For example, a key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process versus those that measure flux through the autophagy pathway (i.e., the complete process including the amount and rate of cargo sequestered and degraded). In particular, a block in macroautophagy that results in autophagosome accumulation must be differentiated from stimuli that increase autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. It is worth emphasizing here that lysosomal digestion is a stage of autophagy and evaluating its competence is a crucial part of the evaluation of autophagic flux, or complete autophagy. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. Along these lines, because of the potential for pleiotropic effects due to blocking autophagy through genetic manipulation, it is imperative to target by gene knockout or RNA interference more than one autophagy-related protein. In addition, some individual Atg proteins, or groups of proteins, are involved in other cellular pathways implying that not all Atg proteins can be used as a specific marker for an autophagic process. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular assays, we hope to encourage technical innovation in the field.

5,187 citations


Journal ArticleDOI
TL;DR: A solution-processed lead halide perovskite solar cell that has p-type NiO(x) and n-type ZnO nanoparticles as hole and electron transport layers, respectively, and shows improved stability against water and oxygen degradation when compared with devices with organic charge transport layers is reported.
Abstract: Lead halide perovskite solar cells have recently attracted tremendous attention because of their excellent photovoltaic efficiencies. However, the poor stability of both the perovskite material and the charge transport layers has so far prevented the fabrication of devices that can withstand sustained operation under normal conditions. Here, we report a solution-processed lead halide perovskite solar cell that has p-type NiOx and n-type ZnO nanoparticles as hole and electron transport layers, respectively, and shows improved stability against water and oxygen degradation when compared with devices with organic charge transport layers. Our cells have a p–i–n structure (glass/indium tin oxide/NiOx/perovskite/ZnO/Al), in which the ZnO layer isolates the perovskite and Al layers, thus preventing degradation. After 60 days storage in air at room temperature, our all-metal-oxide devices retain about 90% of their original efficiency, unlike control devices made with organic transport layers, which undergo a complete degradation after just 5 days. The initial power conversion efficiency of our devices is 14.6 ± 1.5%, with an uncertified maximum value of 16.1%. Using metal oxides for both the hole- and electron-transport layers in perovskite solar cells significantly improves their stability compared with devices containing organic transport layers.

1,834 citations


Journal ArticleDOI
TL;DR: In this article, Chen et al. presented a method for cell biology and anatomy at National Cheng Kung University, Tainan, 701, Taiwan, to detect cancer cells.
Abstract: Scientific Reports 6: Article number: 26436; published online: 23 May 2016; updated: 14 November 2016 The original version of this Article contained errors in the affiliations. “Department of Cell Biology and Anatomy, National Cheng Kung University, Tainan, 701, Taiwan” was incomplete, and now reads:

951 citations


Journal ArticleDOI
TL;DR: The results showed that a 17.8 % increase in the harvest and utilization of solar thermal energy could be achieved using a silicon nanowire array on silicon substrate as compared to that obtained with a plain silicon wafer.
Abstract: Silicon nanowire possesses great potential as the material for renewable energy harvesting and conversion. The significantly reduced spectral reflectivity of silicon nanowire to visible light makes it even more attractive in solar energy applications. However, the benefit of its use for solar thermal energy harvesting remains to be investigated and has so far not been clearly reported. The purpose of this study is to provide practical information and insight into the performance of silicon nanowires in solar thermal energy conversion systems. Spectral hemispherical reflectivity and transmissivity of the black silicon nanowire array on silicon wafer substrate were measured. It was observed that the reflectivity is lower in the visible range but higher in the infrared range compared to the plain silicon wafer. A drying experiment and a theoretical calculation were carried out to directly evaluate the effects of the trade-off between scattering properties at different wavelengths. It is clearly seen that silicon nanowires can improve the solar thermal energy harnessing. The results showed that a 17.8 % increase in the harvest and utilization of solar thermal energy could be achieved using a silicon nanowire array on silicon substrate as compared to that obtained with a plain silicon wafer.

895 citations



Journal ArticleDOI
TL;DR: The p-i-n structure of perovskite solar cells has shown efficiencies as high as 18%, lower temperature processing, flexibility, and, furthermore, negligible J-V hysteresis effects.
Abstract: ConspectusInorganic–organic hybrid perovskite solar cells research could be traced back to 2009, and initially showed 3.8% efficiency. After 6 years of efforts, the efficiency has been pushed to 20.1%. The pace of development was much faster than that of any type of solar cell technology. In addition to high efficiency, the device fabrication is a low-cost solution process. Due to these advantages, a large number of scientists have been immersed into this promising area. In the past 6 years, much of the research on perovskite solar cells has been focused on planar and mesoporous device structures employing an n-type TiO2 layer as the bottom electron transport layer. These architectures have achieved champion device efficiencies. However, they still possess unwanted features. Mesoporous structures require a high temperature (>450 °C) sintering process for the TiO2 scaffold, which will increase the cost and also not be compatible with flexible substrates. While the planar structures based on TiO2 (regular s...

558 citations


Journal ArticleDOI
TL;DR: This paper highlights the major security requirements in BSN-based modern healthcare system and proposes a secure IoT-based healthcare system using BSN, called B SN-Care, which can efficiently accomplish those requirements.
Abstract: Advances in information and communication technologies have led to the emergence of Internet of Things (IoT). In the modern health care environment, the usage of IoT technologies brings convenience of physicians and patients, since they are applied to various medical areas (such as real-time monitoring, patient information management, and healthcare management). The body sensor network (BSN) technology is one of the core technologies of IoT developments in healthcare system, where a patient can be monitored using a collection of tiny-powered and lightweight wireless sensor nodes. However, the development of this new technology in healthcare applications without considering security makes patient privacy vulnerable. In this paper, at first, we highlight the major security requirements in BSN-based modern healthcare system. Subsequently, we propose a secure IoT-based healthcare system using BSN, called BSN-Care, which can efficiently accomplish those requirements.

544 citations


Journal ArticleDOI
M. Aguilar, L. Ali Cavasonza1, Behcet Alpat2, G. Ambrosi2  +265 moreInstitutions (39)
TL;DR: In the absolute rigidity range ∼60 to ∼500 GV, the antiproton p[over ¯], proton p, and positron e^{+} fluxes are found to have nearly identical rigidity dependence and the electron e^{-} flux exhibits a different rigidity dependent.
Abstract: A precision measurement by AMS of the antiproton flux and the antiproton-to-proton flux ratio in primary cosmic rays in the absolute rigidity range from 1 to 450 GV is presented based on 3.49 × 105 antiproton events and 2.42 × 109 proton events. The fluxes and flux ratios of charged elementary particles in cosmic rays are also presented. In the absolute rigidity range ∼60 to ∼500 GV, the antiproton ¯p, proton p, and positron eþ fluxes are found to have nearly identical rigidity dependence and the electron e− flux exhibits a different rigidity dependence. Below 60 GV, the ( ¯ p=p), ( ¯ p=eþ), and (p=eþ) flux ratios each reaches a maximum. From ∼60 to ∼500 GV, the ( ¯ p=p), ( ¯ p=eþ), and (p=eþ) flux ratios show no rigidity dependence. These are new observations of the properties of elementary particles in the cosmos.

464 citations


Journal ArticleDOI
TL;DR: The main challenges for each technology pathway, including conceptual process design, process economics and life-cycle assessment of greenhouse gas emissions are discussed in this paper, and the main challenges of each pathway are discussed.
Abstract: Biomass-derived jet (bio-jet) fuel has become a key element in the aviation industry׳s strategy to reduce operating costs and environmental impacts. Researchers from the oil-refining industry, the aviation industry, government, biofuel companies, agricultural organizations, and academia are working toward developing a commercially viable and sustainable process that produces a long-lasting renewable jet fuel with low production costs and low greenhouse emissions. This jet fuel, additionally, must meet ASTM International specifications and potentially be a 100% drop-in replacement for current petroleum jet fuel. In this study, the current technologies for producing renewable jet fuels, categorized by alcohols-to-jet, oil-to-jet, syngas-to-jet, and sugar-to-jet pathways are reviewed. The main challenges for each technology pathway, including conceptual process design, process economics and life-cycle assessment of greenhouse gas emissions are discussed. Although the feedstock price and availability and energy intensity of the process are significant barriers, biomass-derived jet fuel has the potential to replace a significant portion of conventional jet fuel required to meet commercial and military demand.

341 citations


Journal ArticleDOI
22 Jan 2016-ACS Nano
TL;DR: It is shown that malignant tumors can be completely removed in a nonthermal process and a H2O2-filled polymersome to display echogenic reflectivity and reactive oxygen species-mediated cancer therapy simply triggered by the microultrasound diagnostic system accompanied by MR imaging.
Abstract: Ultrasound techniques have been extensively employed for diagnostic purposes. Because of its features of low cost, easy access, and noninvasive real-time imaging, toward clinical practice it is highly anticipated to simply use diagnostic ultrasound to concurrently perform imaging and therapy. We report a H2O2-filled polymersome to display echogenic reflectivity and reactive oxygen species-mediated cancer therapy simply triggered by the microultrasound diagnostic system accompanied by MR imaging. Instead of filling common perfluorocarbons, the encapsulation of H2O2 in H2O2/Fe3O4-PLGA polymersome provides O2 as the echogenic source and (•)OH as the therapeutic element. On exposure to ultrasound, the polymersome can be easily disrupted to yield (•)OH through the Fenton reaction by reaction of H2O2 and Fe3O4. We showed that malignant tumors can be completely removed in a nonthermal process.

331 citations


Journal ArticleDOI
TL;DR: In this paper, the authors synthesize existing clay mineralogical and geochemical data from similar to 1500 samples from the seafloor and surrounding rivers, deepwater mooring observation results, and high resolution glacial-cyclic clay mineralogy records from six high-quality sediment cores.

Journal ArticleDOI
TL;DR: This review aims to critically discuss the feasibility of microalgae-based wastewater treatment, including the strategies for strain selection, the effect of wastewater types, photobioreactor design, economic feasibility assessment, and other key issues that influence the treatment performance.

Journal ArticleDOI
TL;DR: In this paper, a review of the transport and performance modeling of proton exchange membrane (PEM) fuel cells is presented, where the authors show how these modeling studies offer valid findings and recommendations that can be applied in enhancing transport processes for improving the cell performance.

Journal ArticleDOI
TL;DR: A review highlights the key findings of H. pylori virulence factors reported over the past 20 years and the development of large-scale screening methods, including proteomic, and transcriptomic tools, has been used to determine the complex gene regulatory networks in the bacterium.
Abstract: Helicobacter pylori pathogenesis and disease outcomes are mediated by a complex interplay between bacterial virulence factors, host, and environmental factors. After H. pylori enters the host stomach, four steps are critical for bacteria to establish successful colonization, persistent infection, and disease pathogenesis: (1) Survival in the acidic stomach; (2) movement toward epithelium cells by flagella-mediated motility; (3) attachment to host cells by adhesins/receptors interaction; (4) causing tissue damage by toxin release. Over the past 20 years, the understanding of H. pylori pathogenesis has been improved by studies focusing on the host and bacterial factors through epidemiology researches and molecular mechanism investigations. These include studies identifying the roles of novel virulence factors and their association with different disease outcomes, especially the bacterial adhesins, cag pathogenicity island, and vacuolating cytotoxin. Recently, the development of large-scale screening methods, including proteomic, and transcriptomic tools, has been used to determine the complex gene regulatory networks in H. pylori. In addition, a more available complete genomic database of H. pylori strains isolated from patients with different gastrointestinal diseases worldwide is helpful to characterize this bacterium. This review highlights the key findings of H. pylori virulence factors reported over the past 20 years.

Journal ArticleDOI
TL;DR: A dynamic transcriptional regulatory network under various conditions is provided in PlantPAN 2.0, a systematic platform for plant promoter analysis and reconstructing transcriptional Regulatory networks.
Abstract: Transcription factors (TFs) are sequence-specific DNA-binding proteins acting as critical regulators of gene expression. The Plant Promoter Analysis Navigator (PlantPAN; http://PlantPAN2.itps.ncku.edu.tw) provides an informative resource for detecting transcription factor binding sites (TFBSs), corresponding TFs, and other important regulatory elements (CpG islands and tandem repeats) in a promoter or a set of plant promoters. Additionally, TFBSs, CpG islands, and tandem repeats in the conserve regions between similar gene promoters are also identified. The current PlantPAN release (version 2.0) contains 16 960 TFs and 1143 TF binding site matrices among 76 plant species. In addition to updating of the annotation information, adding experimentally verified TF matrices, and making improvements in the visualization of transcriptional regulatory networks, several new features and functions are incorporated. These features include: (i) comprehensive curation of TF information (response conditions, target genes, and sequence logos of binding motifs, etc.), (ii) co-expression profiles of TFs and their target genes under various conditions, (iii) protein-protein interactions among TFs and their co-factors, (iv) TF-target networks, and (v) downstream promoter elements. Furthermore, a dynamic transcriptional regulatory network under various conditions is provided in PlantPAN 2.0. The PlantPAN 2.0 is a systematic platform for plant promoter analysis and reconstructing transcriptional regulatory networks.

Journal ArticleDOI
M. Aguilar, L. Ali Cavasonza1, G. Ambrosi, Luísa Arruda  +261 moreInstitutions (28)
TL;DR: In this paper, the rigidity dependence of the boron to carbon flux ratio (B/C) is studied and a detailed variation with rigidity of the B=C spectral index is reported for the first time.
Abstract: Knowledge of the rigidity dependence of the boron to carbon flux ratio (B/C) is important in understanding the propagation of cosmic rays. The precise measurement of the B=C ratio from 1.9 GV to 2.6 TV, based on 2.3 million boron and 8.3 million carbon nuclei collected by AMS during the first 5 years of operation, is presented. The detailed variation with rigidity of the B=C spectral index is reported for the first time. The B=C ratio does not show any significant structures in contrast to many cosmic ray models that require such structures at high rigidities. Remarkably, above 65 GV, the B=C ratio is well described by a single power law RΔ with index Δ ¼ −0.333 + 0.014ðfitÞ + 0.005ðsystÞ, in good agreement with the Kolmogorov theory of turbulence which predicts Δ ¼ −1=3 asymptotically.

Journal ArticleDOI
TL;DR: The as-prepared noble metal nanoparticles on MXene show a highly sensitive SERS detection of methylene blue (MB) with calculated enhancement factors on the order of 105, opening a pathway for extending visible-range SERS applications of novel 2D hybrid materials in sensors, catalysis, and biomedical applications.
Abstract: We report on one-step hybridization of silver, gold and palladium nanoparticles from solution onto exfoliated two-dimensional (2D) Ti3C2 titanium carbide (MXene) nanosheets. The produced hybrid materials can be used as substrates for surface-enhanced Raman spectroscopy (SERS). An approximate analytical approach is also developed for the calculation of the surface plasmon resonance (SPR) frequency of nanoparticles immersed in a medium, near the interface of two dielectric media with different dielectric constants. We obtained a good match with the experimental data for SPR wavelengths, 440 nm and 558 nm, respectively for silver and gold nanoparticles. In the case of palladium, our calculated SPR wavelength for the planar geometry was 160 nm, demonstrating that non-spherical palladium nanoparticles coupled with 2D MXene yield a broad, significanlty red-shifted SPR band with a peak at 230 nm. We propose a possible mechanism of the plasmonic hybridization of nanoparticles with MXene. The as-prepared noble metal nanoparticles on MXene show a highly sensitive SERS detection of methylene blue (MB) with calculated enhancement factors on the order of 105. These findings open a pathway for extending visible-range SERS applications of novel 2D hybrid materials in sensors, catalysis, and biomedical applications.

Journal ArticleDOI
TL;DR: A model of GBW stickiness is developed using the e-commerce success model and commitment-trust theory, which indicated that relationship commitment, trust, and satisfaction were key determinants of stickiness intention.

Journal ArticleDOI
TL;DR: A retrospective study of patients with newly diagnosed ENKTL without any previous treatment history for the disease who were given non-anthracycline-based chemotherapies with or without upfront concurrent chemoradiotherapy or radiotherapy with curative intent showed that age greater than 60 years, stage III or IV disease, distant lymph-node involvement, and non-nasal type disease were significantly associated with overall survival and progression-free survival.
Abstract: Summary Background The clinical outcome of extranodal natural killer T-cell lymphoma (ENKTL) has improved substantially as a result of new treatment strategies with non-anthracycline-based chemotherapies and upfront use of concurrent chemoradiotherapy or radiotherapy. A new prognostic model based on the outcomes obtained with these contemporary treatments was warranted. Methods We did a retrospective study of patients with newly diagnosed ENKTL without any previous treatment history for the disease who were given non-anthracycline-based chemotherapies with or without upfront concurrent chemoradiotherapy or radiotherapy with curative intent. A prognostic model to predict overall survival and progression-free survival on the basis of pretreatment clinical and laboratory characteristics was developed by filling a multivariable model on the basis of the dataset with complete data for the selected risk factors for an unbiased prediction model. The final model was applied to the patients who had complete data for the selected risk factors. We did a validation analysis of the prognostic model in an independent cohort. Findings We did multivariate analyses of 527 patients who were included from 38 hospitals in 11 countries in the training cohort. Analyses showed that age greater than 60 years, stage III or IV disease, distant lymph-node involvement, and non-nasal type disease were significantly associated with overall survival and progression-free survival. We used these data as the basis for the prognostic index of natural killer lymphoma (PINK), in which patients are stratified into low-risk (no risk factors), intermediate-risk (one risk factor), or high-risk (two or more risk factors) groups, which were associated with 3-year overall survival of 81% (95% CI 75–86), 62% (55–70), and 25% (20–34), respectively. In the 328 patients with data for Epstein-Barr virus DNA, a detectable viral DNA titre was an independent prognostic factor for overall survival. When these data were added to PINK as the basis for another prognostic index (PINK-E)—which had similar low-risk (zero or one risk factor), intermediate-risk (two risk factors), and high-risk (three or more risk factors) categories—significant associations with overall survival were noted (81% [95% CI 75–87%], 55% (44–66), and 28% (18–40%), respectively). These results were validated and confirmed in an independent cohort, although the PINK-E model was only significantly associated with the high-risk group compared with the low-risk group. Interpretation PINK and PINK-E are new prognostic models that can be used to develop risk-adapted treatment approaches for patients with ENKTL being treated in the contemporary era of non-anthracycline-based therapy. Funding Samsung Biomedical Research Institute.

Journal ArticleDOI
26 Jan 2016-ACS Nano
TL;DR: The developed light-activatable microneedle system with a unique embeddable feature offers an effective, user-friendly, and low-toxicity option for patients requiring long-term and multiple cancer treatments.
Abstract: Because of the aggressive and recurrent nature of cancers, repeated and multimodal treatments are often necessary. Traditional cancer therapies have a risk of serious toxicity and side effects. Hence, it is crucial to develop an alternative treatment modality that is minimally invasive, effectively treats cancers with low toxicity, and can be repeated as required. We developed a light-activatable microneedle (MN) system that can repeatedly and simultaneously provide photothermal therapy and chemotherapy to superficial tumors and exert synergistic anticancer effects. This system consists of embeddable polycaprolactone MNs containing a photosensitive nanomaterial (lanthanum hexaboride) and an anticancer drug (doxorubicin; DOX), and a dissolvable poly(vinyl alcohol)/polyvinylpyrrolidone supporting array patch. Because of this supporting array, the MNs can be completely inserted into the skin and embedded within the target tissue for locoregional cancer treatment. When exposed to near-infrared light, the embe...

Journal ArticleDOI
TL;DR: In this article, a GIS approach was used to integrate five contributing factors: lithology, land cover/land use, lineaments, drainage, and slope, and the results indicated that the most effective groundwater recharge potential zone is located in the Huatung Valley.

Journal ArticleDOI
TL;DR: The quality of the 3D micro patterns improved significantly when the droplets were deposited at 70 °C and the dot spacing, stage velocity and sample temperature were optimized in the 1D and 2D printing of metallic microstructures.
Abstract: This study aims to determine the effects of appropriate experimental parameters on the thermophysical properties of molten micro droplets, Sn-3Ag-0.5Cu solder balls with an average droplet diameter of 50 μm were prepared. The inkjet printing parameters of the molten micro droplets, such as the dot spacing, stage velocity and sample temperature, were optimized in the 1D and 2D printing of metallic microstructures. The impact and mergence of molten micro droplets were observed with a high-speed digital camera. The line width of each sample was then calculated using a formula over a temperature range of 30 to 70 °C. The results showed that a metallic line with a width of 55 μm can be successfully printed with dot spacing (50 μm) and the stage velocity (50 mm∙s-1) at the substrate temperature of 30 °C. The experimental results revealed that the height (from 0.63 to 0.58) and solidification contact angle (from 72° to 56°) of the metallic micro droplets decreased as the temperature of the sample increased from 30 to 70 °C. High-speed digital camera (HSDC) observations showed that the quality of the 3D micro patterns improved significantly when the droplets were deposited at 70 °C.

Journal ArticleDOI
TL;DR: This paper proposes a resource allocation scheme for orthogonal frequency division multiple access (OFDMA)-based cognitive femtocells to maximize the total capacity of all femtocell users (FUs) under given quality-of-service and cotier/cross-tier interference constraints with imperfect channel sensing.
Abstract: The use of cognitive-radio(CR)-enabled femtocell is regarded as a promising technique in wireless communications, and many studies have been reported on its resource allocation and interference management. However, fairness and spectrum sensing errors were ignored in most of the existing studies. In this paper, we propose a resource allocation scheme for orthogonal frequency division multiple access (OFDMA)-based cognitive femtocells. The target is to maximize the total capacity of all femtocell users (FUs) under given quality-of-service (QoS) and cotier/cross-tier interference constraints with imperfect channel sensing. To achieve the fairness among FUs, the minimum and maximum numbers of subchannels occupied by each user are considered. First, the subchannel and power allocation problem is modeled as a mixed-integer programming problem, and then, it is transformed into a convex optimization problem by relaxing subchannel sharing and applying cotier interference constraints, which is finally solved using a dual decomposition method. Based on the obtained solution, an iterative subchannel and power allocation algorithm is proposed. The effectiveness of the proposed algorithm in terms of capacity and fairness compared with the existing schemes is verified by simulations.

Journal ArticleDOI
TL;DR: The importance of further investigations in elucidating the underlying mechanisms of zinc finger proteins in cancer progression is emphasized, as well as the need for more studies into these mechanisms to be concluded.
Abstract: Zinc finger proteins are the largest transcription factor family in human genome. The diverse combinations and functions of zinc finger motifs make zinc finger proteins versatile in biological processes, including development, differentiation, metabolism and autophagy. Over the last few decades, increasing evidence reveals the potential roles of zinc finger proteins in cancer progression. However, the underlying mechanisms of zinc finger proteins in cancer progression vary in different cancer types and even in the same cancer type under different types of stress. Here, we discuss general mechanisms of zinc finger proteins in transcription regulation and summarize recent studies on zinc finger proteins in cancer progression. In this review, we also emphasize the importance of further investigations in elucidating the underlying mechanisms of zinc finger proteins in cancer progression.

Journal ArticleDOI
TL;DR: The first draft genome sequence of a lithophytic orchid, Dendrobium catenatum, is reported, predicting 28,910 protein-coding genes, and finding evidence of a whole genome duplication shared with Phalaenopsis.
Abstract: Orchids make up about 10% of all seed plant species, have great economical value, and are of specific scientific interest because of their renowned flowers and ecological adaptations. Here, we report the first draft genome sequence of a lithophytic orchid, Dendrobium catenatum. We predict 28,910 protein-coding genes, and find evidence of a whole genome duplication shared with Phalaenopsis. We observed the expansion of many resistance-related genes, suggesting a powerful immune system responsible for adaptation to a wide range of ecological niches. We also discovered extensive duplication of genes involved in glucomannan synthase activities, likely related to the synthesis of medicinal polysaccharides. Expansion of MADS-box gene clades ANR1, StMADS11, and MIKC(*), involved in the regulation of development and growth, suggests that these expansions are associated with the astonishing diversity of plant architecture in the genus Dendrobium. On the contrary, members of the type I MADS box gene family are missing, which might explain the loss of the endospermous seed. The findings reported here will be important for future studies into polysaccharide synthesis, adaptations to diverse environments and flower architecture of Orchidaceae.

Journal ArticleDOI
TL;DR: It is suggested that p62 accumulation resulting from defective autophagy may also potentially account for AgNPs cytotoxicity, and a new perspective is offered that interference of AgNPS with ubiquitination may account forAgNPs-induced defective Autophagy and cytotoxic effects.
Abstract: Safety concerns have been raised over the extensive applications of silver nanoparticles (AgNPs) because nano dimensions make them highly bioactive, being potentially harmful to the exposed humans. Surface physico-chemistry (shape, surface charge, chemical composition, etc.) that mainly dictates nano-bio interactions is relevant for influencing their biocompatibility and toxicity. Although the hazardousness of AgNPs has been demonstrated in vitro and in vivo, mechanistic understanding of the toxicity particularly at the molecular and organismal levels, in addition to oxidative stress and silver ion dissolution, has remained unclear. A growing body of research has elucidated that autophagy, being activated in response to exposure to various nanomaterials, may serve as a cellular defense mechanism against nanotoxicity. Recently, autophagy activation was shown to correlate with AgNPs exposure; however, the subsequent autophagosome-lysosome fusion was defective. As autophagy plays a crucial role in selective removal of stress-mediated protein aggregates and injured organelles, AgNPs-induced autophagic flux defect may consequently lead to aggravated cytotoxic responses. Furthermore, we suggest that p62 accumulation resulting from defective autophagy may also potentially account for AgNPs cytotoxicity. Intriguingly, AgNPs have been shown to interfere with ubiquitin modifications, either via upregulating levels of enzymes participating in ubiquitination, or through impairing the biological reactivity of ubiquitin (due to formation of AgNPs-ubiquitin corona). Ubiquitination both confers selectivity to autophagy as well as modulates stabilization, activation, and trafficking of proteins involved in autophagic clearance pathways. In this regard, we offer a new perspective that interference of AgNPs with ubiquitination may account for AgNPs-induced defective autophagy and cytotoxic effects.

Journal ArticleDOI
TL;DR: This paper demonstrates that the existing solutions for anonymous user authentication in WSN are impractical, and proposes a realistic authentication protocol for WSN, which can ensure various imperative security properties like user anonymity, untraceability, forward/backward secrecy, perfect forward secrecy, etc.
Abstract: User authentication in wireless sensor networks (WSN) is a critical security issue due to their unattended and hostile deployment in the field. Since the sensor nodes are equipped with limited computing power, storage, and communication modules, authenticating remote users in such resource-constrained environment is a paramount security concern. Until now, impressive efforts have been made for designing authentication schemes with user anonymity by using only the lightweight cryptographic primitives, such as symmetric key encryption/decryption and hash functions. However, to the best of our knowledge, none has succeeded so far. In this paper, we take an initial step to shed light on the rationale underlying this prominent issue. In order to do that here at first, we demonstrate that the existing solutions for anonymous user authentication in WSN are impractical. Subsequently, we propose a realistic authentication protocol for WSN, which can ensure various imperative security properties like user anonymity, untraceability, forward/backward secrecy, perfect forward secrecy, etc.

Journal ArticleDOI
TL;DR: This lead-free quantum rod replacement has demonstrated to be an effective method to create an absorber layer that increases light harvesting and charge collection for photovoltaic applications in its perovskite phase.
Abstract: Herein, the fabrication of a lead-free cesium tin halide perovskite produced via a simple solvothermal process is reported for the first time. The resulting CsSnX3 (X = Cl, Br, and I) quantum rods show composition-tunable photoluminescence (PL) emissions over the entire visible spectral window (from 625 to 709 nm), as well as significant tunability of the optical properties. In this study, we demonstrate that through hybrid materials (CsSnX3) with different halides, the system can be tunable in terms of PL. By replacing the halide of the CsSnX3 quantum rods, a power conversion efficiency of 12.96% under AM 1.5 G has been achieved. This lead-free quantum rod replacement has demonstrated to be an effective method to create an absorber layer that increases light harvesting and charge collection for photovoltaic applications in its perovskite phase.

Journal ArticleDOI
01 Mar 2016
TL;DR: Drawing from latent state-trait theory, heuristic information processing, and observational learning, the effect of the information quality of the advertisement, the trait of the impulsiveness, and the number of "likes" it receives on consumers' urge to buy impulsively is investigated.
Abstract: Facebook users are increasingly using the site to conduct commercial activities, by posting advertisements in groups and then buying or selling items from each other. This type of group is called as a C2C Facebook "buy and sell" group in the current work. Drawing from latent state-trait theory, heuristic information processing, and observational learning, we conducted an online field experiment to empirically investigate the effect of the information quality of the advertisement, the trait of the impulsiveness, and the number of "likes" it receives on consumers' urge to buy impulsively. The findings and implications of our study are discussed in the paper.

Journal ArticleDOI
TL;DR: In this article, a single-compound triple complementary split-ring resonator (SC-TCSRR) was used to determine the complex permittivity and thickness of a material under test (MUT).
Abstract: This paper presents a novel noncontact measurement technique that entails using a single-compound triple complementary split-ring resonator (SC-TCSRR) to determine the complex permittivity and thickness of a material under test (MUT). The proposed technique overcomes the problem engendered by the existence of air gaps between the sensor ground plane and the MUT. In the proposed approach, a derived governing equation of the resonance frequencies is used to estimate the thickness and complex permittivity of the MUT by calculating the resonant frequency $(f_{{ r}})$ and magnitude response in a single-step noncontact measurement process. This study theoretically analyzed and experimentally verified a simple and low-cost SC-TCSRR measurement method for assessing materials in a noncontact method. For a 0.2-mm air gap, the experiments yielded average measurement errors of 4.32% and 5.05% for the thickness and permittivity, respectively. The proposed SC-TCSRR technique provides excellent solutions for reducing the effect of air-gap conditions on permittivity, thickness, and loss tangent in noncontact measurements.