scispace - formally typeset
Search or ask a question
Institution

ParisTech

EducationParis, France
About: ParisTech is a education organization based out in Paris, France. It is known for research contribution in the topics: Finite element method & Residual stress. The organization has 1888 authors who have published 1965 publications receiving 55532 citations. The organization is also known as: Paris Institute of Technology & ParisTech Développement.


Papers
More filters
Proceedings ArticleDOI
Hao Li1, Fawzi Nashashibi1
18 Nov 2011
TL;DR: A method of multi-vehicle cooperative perception which realizes an effect of augmented reality is proposed in this paper, which can be used for applications of completely automated mode while the effect ofmented reality would also be convenient for driver assistance.
Abstract: A typical scenario where a front vehicle (the first vehicle) occludes the view of another vehicle (the second vehicle) is often encountered in traffic environment and can be potentially dangerous. For enhancing traffic safety in this scenario, multi-vehicle cooperative perception between the two vehicles is useful. Besides, better visualization of the cooperative perception result might be needed for driver assistance. Based on these motivations, a method of multi-vehicle cooperative perception which realizes an effect of augmented reality is proposed in this paper; the effect of augmented reality here means a direct and natural visualization of the occluded environment for the second vehicle, as if a person at the second vehicle can see through the front vehicle and directly perceive the environment occluded. The proposed cooperative perception method can be used for applications of completely automated mode while the effect of augmented reality would also be convenient for driver assistance. Theoretical and technical details of the proposed method are described; field tests results are given to demonstrate the performance of the proposed method.1

46 citations

Journal ArticleDOI
TL;DR: In this paper, a sediment model was implemented by taking advantage of sediment proxy information provided by reservoir bottom deposits and to use it for climate change assessment in a Mediterranean catchment, which showed a general decrease in soil moisture and water discharge, while sediment transport showed an increase in its time compression.
Abstract: The assessment of climate change impacts on the sediment cycle is currently a primary concern for environmental policy analysts in Mediterranean areas. Nevertheless, quantitative assessment of climate change impacts is still a complex task. The aim of this study was to implement a sediment model by taking advantage of sediment proxy information provided by reservoir bottom deposits and to use it for climate change assessment in a Mediterranean catchment. The sediment model was utilised in a catchment that drains into a large reservoir. The depositional history of the reservoir was reconstructed and used for sediment sub-model implementation. The model results were compared with gauged suspended sediment data in order to verify model robustness. Then, the model was coupled with future precipitation and temperature scenarios obtained from climate models. Climatological model outputs for two emission scenarios (A2 and B2) were simulated and the results compared with a reference scenario. Model results showed a general decrease in soil moisture and water discharge. Large floods, which are responsible for the majority of sediment mobilisation, also showed a general decrease. Sediment yield showed a clear reduction under the A2 scenario but increased under the B2 scenario. The computed specific sediment yield for the control period was 6.33 Mg ha−1 year−1, while for the A2 and B2 scenarios, it was 3.62 and 7.04 Mg ha−1 year−1, respectively. Furthermore, sediment transport showed an increase in its time compression, i.e. a stronger dependence of total sediment yield from the largest event contributions. This study shows a methodology for implementing a distributed sediment model by exploiting reservoir sedimentation volumes. This methodology can be applied to a wide range of catchments, given the high availability of reservoir sedimentation data. Moreover, this study showed how such a model can be used in the framework of a climate change study, providing a measure of the impact of climate change on soil erosion and sediment yields.

46 citations

Proceedings Article
01 Jan 2018
TL;DR: The authors showed that the SGLD algorithm has an invariant probability measure which significantly departs from the target posterior and behaves like Stochastic Gradient Descent (SGD).
Abstract: Stochastic Gradient Langevin Dynamics (SGLD) has emerged as a key MCMC algorithm for Bayesian learning from large scale datasets. While SGLD with decreasing step sizes converges weakly to the posterior distribution, the algorithm is often used with a constant step size in practice and has demonstrated spectacular successes in machine learning tasks. The current practice is to set the step size inversely proportional to N where N is the number of training samples. As N becomes large, we show that the SGLD algorithm has an invariant probability measure which significantly departs from the target posterior and behaves like as Stochastic Gradient Descent (SGD). This difference is inherently due to the high variance of the stochastic gradients. Several strategies have been suggested to reduce this effect; among them, SGLD Fixed Point (SGLDFP) uses carefully designed control variates to reduce the variance of the stochastic gradients. We show that SGLDFP gives approximate samples from the posterior distribution, with an accuracy comparable to the Langevin Monte Carlo (LMC) algorithm for a computational cost sublinear in the number of data points. We provide a detailed analysis of the Wasserstein distances between LMC, SGLD, SGLDFP and SGD and explicit expressions of the means and covariance matrices of their invariant distributions. Our findings are supported by limited numerical experiments.

46 citations

Proceedings ArticleDOI
23 Jun 2008
TL;DR: Experiments conducted on object recognition show that when plugging the kernel in SVMs, the authors clearly outperform SVMs with ldquocontext-freerdquo kernels, and this paper will show that the fixed-point of this energy is a new type of kernel (ldquoCDKrdquo) which also satisfies the Mercer condition.
Abstract: The success of kernel methods including support vector networks (SVMs) strongly depends on the design of appropriate kernels. While initially kernels were designed in order to handle fixed-length data, their extension to unordered, variable-length data became more than necessary for real pattern recognition problems such as object recognition and bioinformatics. We focus in this paper on object recognition using a new type of kernel referred to as ldquocontext-dependentrdquo. Objects, seen as constellations of local features (interest points, regions, etc.), are matched by minimizing an energy function mixing (1) a fidelity term which measures the quality of feature matching, (2) a neighborhood criteria which captures the object geometry and (3) a regularization term. We will show that the fixed-point of this energy is a ldquocontext-dependentrdquo kernel (ldquoCDKrdquo) which also satisfies the Mercer condition. Experiments conducted on object recognition show that when plugging our kernel in SVMs, we clearly outperform SVMs with ldquocontext-freerdquo kernels.

45 citations

Journal ArticleDOI
TL;DR: It is shown that interfaces such as the smartphone interface allows nonexpert users to intuitively provide much better training examples to the robot, which is almost as good as expert users who are trained for this task and are aware of the different visual perception and machine learning issues.
Abstract: This paper studies the impact of interfaces, allowing nonexpert users to efficiently and intuitively teach a robot to recognize new visual objects. We present challenges that need to be addressed for real-world deployment of robots capable of learning new visual objects in interaction with everyday users. We argue that in addition to robust machine learning and computer vision methods, well-designed interfaces are crucial for learning efficiency. In particular, we argue that interfaces can be key in helping nonexpert users to collect good learning examples and, thus, improve the performance of the overall learning system. Then, we present four alternative human–robot interfaces: Three are based on the use of a mediating artifact (smartphone, wiimote, wiimote and laser), and one is based on natural human gestures (with a Wizard-of-Oz recognition system). These interfaces mainly vary in the kind of feedback provided to the user, allowing him to understand more or less easily what the robot is perceiving and, thus, guide his way of providing training examples differently. We then evaluate the impact of these interfaces, in terms of learning efficiency, usability, and user’s experience, through a real world and large-scale user study. In this experiment, we asked participants to teach a robot 12 different new visual objects in the context of a robotic game. This game happens in a home-like environment and was designed to motivate and engage users in an interaction where using the system was meaningful. We then discuss results that show significant differences among interfaces. In particular, we show that interfaces such as the smartphone interface allows nonexpert users to intuitively provide much better training examples to the robot, which is almost as good as expert users who are trained for this task and are aware of the different visual perception and machine learning issues. We also show that artifact-mediated teaching is significantly more efficient for robot learning, and equally good in terms of usability and user’s experience, than teaching thanks to a gesture-based human-like interaction.

45 citations


Authors

Showing all 1899 results

NameH-indexPapersCitations
Mathias Fink11690051759
George G. Malliaras9438228533
Mickael Tanter8558329452
Gerard Mourou8265334147
Catherine Lapierre7922718286
Carlo Adamo7544436092
Jean-François Joanny7229420700
Marie-Paule Lefranc7238121087
Paul B. Rainey7022217930
Vincent Lepetit7026826207
Bernard Asselain6940923648
Michael J. Baker6939420834
Jacques Prost6819819064
Jean-Philippe Vert6723517593
Jacques Mairesse6631020539
Network Information
Related Institutions (5)
Royal Institute of Technology
68.4K papers, 1.9M citations

91% related

École Normale Supérieure
99.4K papers, 3M citations

90% related

RWTH Aachen University
96.2K papers, 2.5M citations

89% related

Eindhoven University of Technology
52.9K papers, 1.5M citations

89% related

École Polytechnique Fédérale de Lausanne
98.2K papers, 4.3M citations

89% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20239
202212
202174
202093
2019127
2018145