scispace - formally typeset
Search or ask a question
Institution

Rockefeller University

EducationNew York, New York, United States
About: Rockefeller University is a education organization based out in New York, New York, United States. It is known for research contribution in the topics: Population & Gene. The organization has 15867 authors who have published 32938 publications receiving 2940261 citations. The organization is also known as: Rockefeller University & Rockefeller Institute.
Topics: Population, Gene, Virus, Antigen, Receptor


Papers
More filters
Journal ArticleDOI
TL;DR: The apolipoprotein E (APOE) E4 allele is associated with Alzheimer's disease, cardiovascular disease, and decreased longevity, and cell lines were created which secrete each apoE isoform to probe the mechanism of these associations.
Abstract: The apolipoprotein E (APOE) E4 allele is associated with Alzheimer's disease, cardiovascular disease, and decreased longevity To probe the mechanism of these associations, cell lines were created which secrete each apoE isoform ApoE conditioned media, purified apoE, and commercially obtained apoE protected B12 cells from hydrogen peroxide cytotoxicity with E2 > E3 > E4 Physiological levels of apoE protected cells from beta-amyloid peptides, while higher doses of apoE led to increased cytotoxicity E2 > E3 > E4 possessed antioxidant activity, and apoE bound certain metal ions The decreased antioxidant activity of E4 could contribute to its association with Alzheimer's disease, cardiovascular disease and decreased longevity

897 citations

Journal ArticleDOI
12 Apr 2007-Nature
TL;DR: An epistatic miniarray profile consisting of quantitative pairwise measurements of the genetic interactions between 743 Saccharomyces cerevisiae genes involved in various aspects of chromosome biology reveals that physical interactions fall into two well-represented classes distinguished by whether or not the individual proteins act coherently to carry out a common function.
Abstract: Defining the functional relationships between proteins is critical for understanding virtually all aspects of cell biology. Large-scale identification of protein complexes has provided one important step towards this goal; however, even knowledge of the stoichiometry, affinity and lifetime of every protein-protein interaction would not reveal the functional relationships between and within such complexes. Genetic interactions can provide functional information that is largely invisible to protein-protein interaction data sets. Here we present an epistatic miniarray profile (E-MAP) consisting of quantitative pairwise measurements of the genetic interactions between 743 Saccharomyces cerevisiae genes involved in various aspects of chromosome biology (including DNA replication/repair, chromatid segregation and transcriptional regulation). This E-MAP reveals that physical interactions fall into two well-represented classes distinguished by whether or not the individual proteins act coherently to carry out a common function. Thus, genetic interaction data make it possible to dissect functionally multi-protein complexes, including Mediator, and to organize distinct protein complexes into pathways. In one pathway defined here, we show that Rtt109 is the founding member of a novel class of histone acetyltransferases responsible for Asf1-dependent acetylation of histone H3 on lysine 56. This modification, in turn, enables a ubiquitin ligase complex containing the cullin Rtt101 to ensure genomic integrity during DNA replication.

897 citations

Journal ArticleDOI
02 Apr 2009-Nature
TL;DR: The IgG memory B-cell compartment in the selected group of patients with broad serumneutralizing activity to HIV is comprised of multiple clonal responses with neutralizing activity directed against several epitopes on gp120.
Abstract: Serologic memory is an important factor in long-term vaccine efficacy, but there is little understanding of the antibodies produced by memory B cells in individuals infected with important human pathogens such as HIV To examine the memory antibody response to HIV, Scheid et al cloned more than 500 antibodies from HIV-specific memory B cells from six HIV-infected patients with high serum titres of broadly neutralizing antibodies The B-cell memory response to HIV in these patients was composed of up to 50 independent expanded B clones expressing a heterogeneous collection of antibodies to different viral epitopes, several of which may be important for broad HIV neutralization and effective vaccination This study clones and characterizes antibodies present in six HIV-infected subjects with low-to-intermediate viral loads Antibodies to conserved epitopes on the human immunodeficiency virus (HIV) surface protein gp140 can protect against infection in non-human primates, and some infected individuals show high titres of broadly neutralizing immunoglobulin (Ig)G antibodies in their serum However, little is known about the specificity and activity of these antibodies1,2,3 To characterize the memory antibody responses to HIV, we cloned 502 antibodies from HIV envelope-binding memory B cells from six HIV-infected patients with broadly neutralizing antibodies and low to intermediate viral loads We show that in these patients, the B-cell memory response to gp140 is composed of up to 50 independent clones expressing high affinity neutralizing antibodies to the gp120 variable loops, the CD4-binding site, the co-receptor-binding site, and to a new neutralizing epitope that is in the same region of gp120 as the CD4-binding site Thus, the IgG memory B-cell compartment in the selected group of patients with broad serum neutralizing activity to HIV is comprised of multiple clonal responses with neutralizing activity directed against several epitopes on gp120

896 citations

Journal ArticleDOI
31 Oct 1996-Nature
TL;DR: DPC4 is essential for the function of Smadl and Smad2 in pathways that signal mesoderm induction and patterning in Xenopus embryos, as well as antimitogenic and transcriptional responses in breast epithelial cells.
Abstract: The TGF-beta/activin/BMP superfamily of growth factors signals through heteromeric receptor complexes of type I and type II serine/threonine kinase receptors. The signal originated by TGF-beta-like molecules appears to be transduced by a set of evolutionarily conserved proteins known as SMADs, which upon activation directly translocate to the nucleus where they may activate transcription. Five SMAD proteins have so far been characterized in vertebrates. These factors are related to the mediator of decapentaplegic (dpp) signalling, mothers against dpp (Mad), in Drosophila and to the Sma genes from Caenorhabditis elegans. Smad1 and Smad2 have been shown to mimic the effects of BMP and activin, respectively, both in Xenopus and in mammalian cells, whereas Smad3 (a close homologue of Smad2) and the related protein DPC4, a tumour-suppressor gene product, mediate TGF-beta actions. We report here that DPC4 is essential for the function of Smad1 and Smad2 in pathways that signal mesoderm induction and patterning in Xenopus embryos, as well as antimitogenic and transcriptional responses in breast epithelial cells. DPC4 associates with Smad1 in response to BMP and with Smad2 in response to activin or TGF-beta. DPC4 is therefore a regulated partner of SMADs that function in different signalling pathways of the TGF-beta family.

893 citations

Journal ArticleDOI
TL;DR: Recent findings regarding the mechanisms of protection in helminth infections that have been elucidated in murine models are examined and the implications of these findings in terms of future therapies are discussed.
Abstract: Important insights have recently been gained in our understanding of how host immune responses mediate resistance to parasitic helminths and control associated pathological responses. Although similar cells and cytokines are evoked in response to infection by helminths as diverse as nematodes and schistosomes, the components of the response that mediate protection are dependent on the particular parasite. In this Review, we examine recent findings regarding the mechanisms of protection in helminth infections that have been elucidated in murine models and discuss the implications of these findings in terms of future therapies.

893 citations


Authors

Showing all 15925 results

NameH-indexPapersCitations
Bruce S. McEwen2151163200638
David Baltimore203876162955
Ronald M. Evans199708166722
Lewis C. Cantley196748169037
Ronald Klein1941305149140
Scott M. Grundy187841231821
Jie Zhang1784857221720
Andrea Bocci1722402176461
Ralph M. Steinman171453121518
Masayuki Yamamoto1711576123028
Zena Werb168473122629
Nahum Sonenberg167647104053
Michel C. Nussenzweig16551687665
Harvey F. Lodish165782101124
Dennis R. Burton16468390959
Network Information
Related Institutions (5)
Howard Hughes Medical Institute
34.6K papers, 5.2M citations

95% related

Scripps Research Institute
32.8K papers, 2.9M citations

94% related

National Institutes of Health
297.8K papers, 21.3M citations

94% related

University of Texas Southwestern Medical Center
75.2K papers, 4.4M citations

92% related

Yale University
220.6K papers, 12.8M citations

92% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202314
202284
2021873
2020792
2019716
2018767