scispace - formally typeset
Search or ask a question

Showing papers by "Rockefeller University published in 2005"


Journal ArticleDOI
15 Sep 2005-Nature
TL;DR: A scalable, highly parallel sequencing system with raw throughput significantly greater than that of state-of-the-art capillary electrophoresis instruments with 96% coverage at 99.96% accuracy in one run of the machine is described.
Abstract: The proliferation of large-scale DNA-sequencing projects in recent years has driven a search for alternative methods to reduce time and cost. Here we describe a scalable, highly parallel sequencing system with raw throughput significantly greater than that of state-of-the-art capillary electrophoresis instruments. The apparatus uses a novel fibre-optic slide of individual wells and is able to sequence 25 million bases, at 99% or better accuracy, in one four-hour run. To achieve an approximately 100-fold increase in throughput over current Sanger sequencing technology, we have developed an emulsion method for DNA amplification and an instrument for sequencing by synthesis using a pyrosequencing protocol optimized for solid support and picolitre-scale volumes. Here we show the utility, throughput, accuracy and robustness of this system by shotgun sequencing and de novo assembly of the Mycoplasma genitalium genome with 96% coverage at 99.96% accuracy in one run of the machine.

8,434 citations


Journal ArticleDOI
TL;DR: PicTar, a computational method for identifying common targets of micro RNAs, is presented and widespread coordinate control executed by microRNAs is suggested, thus providing evidence for coordinate microRNA control in mammals.
Abstract: MicroRNAs are small noncoding RNAs that recognize and bind to partially complementary sites in the 3' untranslated regions of target genes in animals and, by unknown mechanisms, regulate protein production of the target transcript. Different combinations of microRNAs are expressed in different cell types and may coordinately regulate cell-specific target genes. Here, we present PicTar, a computational method for identifying common targets of microRNAs. Statistical tests using genome-wide alignments of eight vertebrate genomes, PicTar's ability to specifically recover published microRNA targets, and experimental validation of seven predicted targets suggest that PicTar has an excellent success rate in predicting targets for single microRNAs and for combinations of microRNAs. We find that vertebrate microRNAs target, on average, roughly 200 transcripts each. Furthermore, our results suggest widespread coordinate control executed by microRNAs. In particular, we experimentally validate common regulation of Mtpn by miR-375, miR-124 and let-7b and thus provide evidence for coordinate microRNA control in mammals.

4,660 citations


Journal ArticleDOI
15 Apr 2005-Science
TL;DR: A genome-wide screen for polymorphisms associated with age-related macular degeneration revealed a polymorphism in linkage disequilibrium with the risk allele representing a tyrosine-histidine change at amino acid 402 in the complement factor H gene.
Abstract: Age-related macular degeneration (AMD) is a major cause of blindness in the elderly. We report a genome-wide screen of 96 cases and 50 controls for polymorphisms associated with AMD. Among 116,204 single-nucleotide polymorphisms genotyped, an intronic and common variant in the complement factor H gene ( CFH ) is strongly associated with AMD (nominal P value -7 ). In individuals homozygous for the risk allele, the likelihood of AMD is increased by a factor of 7.4 (95% confidence interval 2.9 to 19). Resequencing revealed a polymorphism in linkage disequilibrium with the risk allele representing a tyrosine-histidine change at amino acid 402. This polymorphism is in a region of CFH that binds heparin and C-reactive protein. The CFH gene is located on chromosome 1 in a region repeatedly linked to AMD in family-based studies.

4,459 citations


Journal ArticleDOI
01 Dec 2005-Nature
TL;DR: It is shown that a novel class of chemically engineered oligonucleotides, termed ‘antagomirs’, are efficient and specific silencers of endogenous miRNA levels in mice and may represent a therapeutic strategy for silencing miRNAs in disease.
Abstract: MicroRNAs (miRNAs) are an abundant class of non-coding RNAs that are believed to be important in many biological processes through regulation of gene expression. The precise molecular function of miRNAs in mammals is largely unknown and a better understanding will require loss-of-function studies in vivo. Here we show that a novel class of chemically engineered oligonucleotides, termed 'antagomirs', are efficient and specific silencers of endogenous miRNAs in mice. Intravenous administration of antagomirs against miR-16, miR-122, miR-192 and miR-194 resulted in a marked reduction of corresponding miRNA levels in liver, lung, kidney, heart, intestine, fat, skin, bone marrow, muscle, ovaries and adrenals. The silencing of endogenous miRNAs by this novel method is specific, efficient and long-lasting. The biological significance of silencing miRNAs with the use of antagomirs was studied for miR-122, an abundant liver-specific miRNA. Gene expression and bioinformatic analysis of messenger RNA from antagomir-treated animals revealed that the 3' untranslated regions of upregulated genes are strongly enriched in miR-122 recognition motifs, whereas downregulated genes are depleted in these motifs. Analysis of the functional annotation of downregulated genes specifically predicted that cholesterol biosynthesis genes would be affected by miR-122, and plasma cholesterol measurements showed reduced levels in antagomir-122-treated mice. Our findings show that antagomirs are powerful tools to silence specific miRNAs in vivo and may represent a therapeutic strategy for silencing miRNAs in disease.

4,045 citations


Journal ArticleDOI
TL;DR: The current data argue that shelterin is emerging as a protein complex with DNA remodeling activity that acts together with several associated DNA repair factors to change the structure of the telomeric DNA, thereby protecting chromosome ends.
Abstract: Added by telomerase, arrays of TTAGGG repeats specify the ends of human chromosomes. A complex formed by six telomere-specific proteins associates with this sequence and protects chromosome ends. By analogy to other chromosomal protein complexes such as condensin and cohesin, I will refer to this complex as shelterin. Three shelterin subunits, TRF1, TRF2, and POT1 directly recognize TTAGGG repeats. They are interconnected by three additional shelterin proteins, TIN2, TPP1, and Rap1, forming a complex that allows cells to distinguish telomeres from sites of DNA damage. Without the protective activity of shelterin, telomeres are no longer hidden from the DNA damage surveillance and chromosome ends are inappropriately processed by DNA repair pathways. How does shelterin avert these events? The current data argue that shelterin is not a static structural component of the telomere. Instead, shelterin is emerging as a protein complex with DNA remodeling activity that acts together with several associated DNA repair factors to change the structure of the telomeric DNA, thereby protecting chromosome ends. Six shelterin subunits: TRF1, TRF2, TIN2, Rap1, TPP1, and POT1.

2,698 citations


Journal ArticleDOI
22 Jul 2005-Science
TL;DR: A full-length HCV genome that replicates and produces virus particles that are infectious in cell culture (HCVcc) is described, suggesting that this in vitro system will aid in the search for improved antiviral compounds.
Abstract: Many aspects of the hepatitis C virus (HCV) life cycle have not been reproduced in cell culture, which has slowed research progress on this important human pathogen. Here, we describe a full-length HCV genome that replicates and produces virus particles that are infectious in cell culture (HCVcc). Replication of HCVcc was robust, producing nearly 10(5) infectious units per milliliter within 48 hours. Virus particles were filterable and neutralized with a monoclonal antibody against the viral glycoprotein E2. Viral entry was dependent on cellular expression of a putative HCV receptor, CD81. HCVcc replication was inhibited by interferon-alpha and by several HCV-specific antiviral compounds, suggesting that this in vitro system will aid in the search for improved antivirals.

2,305 citations


Journal ArticleDOI
TL;DR: Gene expression analysis showed that IL-2 signaling was required for maintenance of the expression of genes involved in the regulation of cell growth and metabolism, which seems to be critically required for maintaining the homeostasis and competitive fitness of Treg cells in vivo.
Abstract: Regulatory T cells (T(reg) cells) expressing the forkhead family transcription factor Foxp3 are critical mediators of dominant immune tolerance to self. Most T(reg) cells constitutively express the high-affinity interleukin 2 (IL-2) receptor alpha-chain (CD25); however, the precise function of IL-2 in T(reg) cell biology has remained controversial. To directly assess the effect of IL-2 signaling on T(reg) cell development and function, we analyzed mice containing the Foxp3(gfp) knock-in allele that were genetically deficient in either IL-2 (Il2(-/-)) or CD25 (Il2ra(-/-)). We found that IL-2 signaling was dispensable for the induction of Foxp3 expression in thymocytes from these mice, which indicated that IL-2 signaling does not have a nonredundant function in the development of T(reg) cells. Unexpectedly, Il2(-/-) and Il2ra(-/-) T(reg) cells were fully able to suppress T cell proliferation in vitro. In contrast, Foxp3 was not expressed in thymocytes or peripheral T cells from Il2rg(-/-) mice. Gene expression analysis showed that IL-2 signaling was required for maintenance of the expression of genes involved in the regulation of cell growth and metabolism. Thus, IL-2 signaling seems to be critically required for maintaining the homeostasis and competitive fitness of T(reg) cells in vivo.

1,765 citations


Journal ArticleDOI
TL;DR: It is found that application of amyloid-β promoted endocytosis of NMDA receptors in cortical neurons, indicating a new mechanism by which amyloids-β can cause synaptic dysfunction and contribute to Alzheimer disease pathology.
Abstract: Amyloid-beta peptide is elevated in the brains of patients with Alzheimer disease and is believed to be causative in the disease process. Amyloid-beta reduces glutamatergic transmission and inhibits synaptic plasticity, although the underlying mechanisms are unknown. We found that application of amyloid-beta promoted endocytosis of NMDA receptors in cortical neurons. In addition, neurons from a genetic mouse model of Alzheimer disease expressed reduced amounts of surface NMDA receptors. Reducing amyloid-beta by treating neurons with a gamma-secretase inhibitor restored surface expression of NMDA receptors. Consistent with these data, amyloid-beta application produced a rapid and persistent depression of NMDA-evoked currents in cortical neurons. Amyloid-beta-dependent endocytosis of NMDA receptors required the alpha-7 nicotinic receptor, protein phosphatase 2B (PP2B) and the tyrosine phosphatase STEP. Dephosphorylation of the NMDA receptor subunit NR2B at Tyr1472 correlated with receptor endocytosis. These data indicate a new mechanism by which amyloid-beta can cause synaptic dysfunction and contribute to Alzheimer disease pathology.

1,442 citations


Journal ArticleDOI
23 Sep 2005-Science
TL;DR: It is shown that stochastic switching can be favored over sensing when the environment changes infrequently, and the optimal switching rates then mimic the statistics of environmental changes.
Abstract: Organisms in fluctuating environments must constantly adapt their behavior to survive. In clonal populations, this may be achieved through sensing followed by response or through the generation of diversity by stochastic phenotype switching. Here we show that stochastic switching can be favored over sensing when the environment changes infrequently. The optimal switching rates then mimic the statistics of environmental changes. We derive a relation between the long-term growth rate of the organism and the information available about its fluctuating environment.

1,358 citations


Journal ArticleDOI
TL;DR: The purpose of the current assessment is to provide some guidance to users regarding the accuracy of currently available tools in various settings, and to provide a benchmark of data sets for assessing future tools.
Abstract: The prediction of regulatory elements is a problem where computational methods offer great hope. Over the past few years, numerous tools have become available for this task. The purpose of the current assessment is twofold: to provide some guidance to users regarding the accuracy of currently available tools in various settings, and to provide a benchmark of data sets for assessing future tools.

1,324 citations


Journal ArticleDOI
TL;DR: The conversion of truly naive CD4+ T cells into suppressor cells expressing Foxp3 is reported by targeting of peptide-agonist ligands to dendritic cells and by analysis of Foxp 3 expression at the level of single cells, showing that conversion was achieved by minute antigen doses with suboptimal dendrite cell activation.
Abstract: Evidence suggests that regulatory T cells expressing the transcription factor Foxp3 develop extrathymically and intrathymically. Mechanisms of extrathymic induction require further scrutiny, especially as proliferation and/or phenotypic changes of preexisting suppressor cells must be distinguished from true de novo generation. Here we report the conversion of truly naive CD4+ T cells into suppressor cells expressing Foxp3 by targeting of peptide-agonist ligands to dendritic cells and by analysis of Foxp3 expression at the level of single cells. We show that conversion was achieved by minute antigen doses with suboptimal dendritic cell activation. The addition of transforming growth factor-β or the absence of interleukin 2 production, which reduces proliferation, enhanced the conversion rate. In addition, regulatory T cell populations induced in subimmunogenic conditions could subsequently be expanded by delivery of antigen in immunogenic conditions. The extrathymic generation and proliferation of regulatory T cells may contribute to self-tolerance as well as the poor immunogenicity of tumors and may be exploited clinically to prevent or reverse unwanted immunity.

Journal ArticleDOI
TL;DR: To identify other miRNA genes in pathogenic viruses, a new miRNA gene prediction method with small-RNA cloning from several virus-infected cell types was combined and predicted miRNAs in several large DNA viruses.
Abstract: Epstein-Barr virus (EBV or HHV4), a member of the human herpesvirus (HHV) family, has recently been shown to encode microRNAs (miRNAs). In contrast to most eukaryotic miRNAs, these viral miRNAs do not have close homologs in other viral genomes or in the genome of the human host. To identify other miRNA genes in pathogenic viruses, we combined a new miRNA gene prediction method with small-RNA cloning from several virus-infected cell types. We cloned ten miRNAs in the Kaposi sarcoma-associated virus (KSHV or HHV8), nine miRNAs in the mouse gammaherpesvirus 68 (MHV68) and nine miRNAs in the human cytomegalovirus (HCMV or HHV5). These miRNA genes are expressed individually or in clusters from either polymerase (pol) II or pol III promoters, and share no substantial sequence homology with one another or with the known human miRNAs. Generally, we predicted miRNAs in several large DNA viruses, and we could neither predict nor experimentally identify miRNAs in the genomes of small RNA viruses or retroviruses.

Journal ArticleDOI
TL;DR: This review examines the roles of intrinsic disorder in protein network architecture and shows that there are three general ways that intrinsic disorder can contribute: First, intrinsic Disorder can serve as the structural basis for hub protein promiscuity; secondly, intrinsically disordered proteins can bind to structured hub proteins; and thirdly, intrinsic disorderCan provide flexible linkers between functional domains with the linkers enabling mechanisms that facilitate binding diversity.
Abstract: Proteins participate in complex sets of interactions that represent the mechanistic foundation for much of the physiology and function of the cell. These protein-protein interactions are organized into exquisitely complex networks. The architecture of protein-protein interaction networks was recently proposed to be scale-free, with most of the proteins having only one or two connections but with relatively fewer 'hubs' possessing tens, hundreds or more links. The high level of hub connectivity must somehow be reflected in protein structure. What structural quality of hub proteins enables them to interact with large numbers of diverse targets? One possibility would be to employ binding regions that have the ability to bind multiple, structurally diverse partners. This trait can be imparted by the incorporation of intrinsic disorder in one or both partners. To illustrate the value of such contributions, this review examines the roles of intrinsic disorder in protein network architecture. We show that there are three general ways that intrinsic disorder can contribute: First, intrinsic disorder can serve as the structural basis for hub protein promiscuity; secondly, intrinsically disordered proteins can bind to structured hub proteins; and thirdly, intrinsic disorder can provide flexible linkers between functional domains with the linkers enabling mechanisms that facilitate binding diversity. An important research direction will be to determine what fraction of protein-protein interaction in regulatory networks relies on intrinsic disorder.

Journal ArticleDOI
TL;DR: A conceptual framework is presented showing that Hawks, due to inefficient management of mediators of allostasis, are more likely to be violent, to develop impulse control disorders, hypertension, cardiac arrhythmias, sudden death, atypical depression, chronic fatigue states and inflammation.

Journal ArticleDOI
02 Dec 2005-Science
TL;DR: The mechanism underlying this long-standing observation of subclass dominance in function is provided by the differential affinities of IgG subclasses for specific activating IgG Fc receptors compared with their affinITIES for the inhibitory IgGFc receptor.
Abstract: Subclasses of immunoglobulin G (IgG) display substantial differences in their ability to mediate effector responses, contributing to variable activity of antibodies against microbes and tumors. We demonstrate that the mechanism underlying this long-standing observation of subclass dominance in function is provided by the differential affinities of IgG subclasses for specific activating IgG Fc receptors compared with their affinities for the inhibitory IgG Fc receptor. The significant differences in the ratios of activating-to-inhibitory receptor binding predicted the in vivo activity. We suggest that these highly predictable functions assigned by Fc binding will be an important consideration in the design of therapeutic antibodies and vaccines.

Journal ArticleDOI
TL;DR: A growing body of evidence suggests that biological mechanisms underlie a bidirectional link between mood disorders and many medical illnesses and there is evidence to suggest that mood disorders affect the course of medical illnesses.

Journal ArticleDOI
22 Dec 2005-Nature
TL;DR: It is shown that HP1α, -β, and -γ are released from chromatin during the M phase of the cell cycle, even though tri-methylation levels of histone H3 lysine 9 remain unchanged, and a regulatory mechanism of protein–protein interactions is established through a combinatorial readout of two adjacent post-translational modifications: a stable methylation and a dynamic phosphorylation mark.
Abstract: Tri-methylation of histone H3 lysine 9 is important for recruiting heterochromatin protein 1 (HP1) to discrete regions of the genome, thereby regulating gene expression, chromatin packaging and heterochromatin formation Here we show that HP1α, -β, and -γ are released from chromatin during the M phase of the cell cycle, even though tri-methylation levels of histone H3 lysine 9 remain unchanged However, the additional, transient modification of histone H3 by phosphorylation of serine 10 next to the more stable methyl-lysine 9 mark is sufficient to eject HP1 proteins from their binding sites Inhibition or depletion of the mitotic kinase Aurora B, which phosphorylates serine 10 on histone H3, causes retention of HP1 proteins on mitotic chromosomes, suggesting that H3 serine 10 phosphorylation is necessary for the dissociation of HP1 from chromatin in M phase These findings establish a regulatory mechanism of protein–protein interactions, through a combinatorial readout of two adjacent post-translational modifications: a stable methylation and a dynamic phosphorylation mark

Journal ArticleDOI
TL;DR: This work focuses on recent approaches to the study of genetic variation in personality and physiological traits, and their influence on and interaction with addictive diseases.
Abstract: Genetic variation may partially underlie complex personality and physiological traits--such as impulsivity, risk taking and stress responsivity--as well as a substantial proportion of vulnerability to addictive diseases. Furthermore, personality and physiological traits themselves may differentially affect the various stages of addiction, defined chronologically as initiation of drug use, regular drug use, addiction/dependence and potentially relapse. Here we focus on recent approaches to the study of genetic variation in these personality and physiological traits, and their influence on and interaction with addictive diseases.

Journal ArticleDOI
TL;DR: It is shown that miR164 guides the cleavage of endogenous and transgenic NAC1 mRNA, producing 3′-specific fragments, which indicates that auxin induction ofmiR164 provides a homeostatic mechanism to clear Nac1 mRNA to downregulate auxin signals.
Abstract: Although several plant microRNAs (miRNAs) have been shown to play a role in plant development, no phenotype has yet been associated with a reduction or loss of expression of any plant miRNA. Arabidopsis thaliana miR164 was predicted to target five NAM/ATAF/CUC (NAC) domain‐encoding mRNAs, including NAC1, which transduces auxin signals for lateral root emergence. Here, we show that miR164 guides the cleavage of endogenous and transgenic NAC1 mRNA, producing 39specific fragments. Cleavage was blocked by NAC1 mutations that disrupt base pairing with miR164. Compared with wildtype plants, Arabidopsis mir164a and mir164b mutant plants expressed less miR164 and more NAC1 mRNA and produced more lateral roots. These mutant phenotypes can be complemented by expression of the appropriate MIR164a and MIR164b genomic sequences. By contrast, inducible expression of miR164 in wild-type plants led to decreased NAC1 mRNA levels and reduced lateral root emergence. Auxin induction of miR164 was mirrored by an increase in the NAC1 mRNA 39 fragment, which was not observed in the auxin-insensitive mutants auxin resistant1 (axr1-12), axr2-1, and transport inhibitor response1. Moreover, the cleavage-resistant form of NAC1 mRNA was unaffected by auxin treatment. Our results indicate that auxin induction of miR164 provides a homeostatic mechanism to clear NAC1 mRNA to downregulate auxin signals.

Journal ArticleDOI
TL;DR: It is shown that in ex vivo mouse blastocyst cultures, SMAD2/3 signaling is also required to maintain the inner cell mass (from which stem cells are derived), demonstrating an interconnection between TGFβ and WNT signaling in these contexts.
Abstract: Human embryonic stem cells (hESCs) self-renew indefinitely and give rise to derivatives of all three primary germ layers, yet little is known about the signaling cascades that govern their pluripotent character. Because it plays a prominent role in the early cell fate decisions of embryonic development, we have examined the role of TGFβ superfamily signaling in hESCs. We found that, in undifferentiated cells, the TGFβ/activin/nodal branch is activated (through the signal transducer SMAD2/3) while the BMP/GDF branch (SMAD1/5) is only active in isolated mitotic cells. Upon early differentiation, SMAD2/3 signaling is decreased while SMAD1/5 signaling is activated. We next tested the functional role of TGFβ/activin/nodal signaling in hESCs and found that it is required for the maintenance of markers of the undifferentiated state. We extend these findings to show that SMAD2/3 activation is required downstream of WNT signaling, which we have previously shown to be sufficient to maintain the undifferentiated state of hESCs. Strikingly, we show that in ex vivo mouse blastocyst cultures, SMAD2/3 signaling is also required to maintain the inner cell mass (from which stem cells are derived). These data reveal a crucial role for TGFβ signaling in the earliest stages of cell fate determination and demonstrate an interconnection between TGFβ and WNT signaling in these contexts.

Journal ArticleDOI
17 Aug 2005-Nature
TL;DR: Since the discovery of the hepatitis C virus over 15 years ago, scientists have raced to develop diagnostics, study the virus and find new therapies, but virtually every attempt to dissect this pathogen met with roadblocks that impeded progress.
Abstract: Since the discovery of the hepatitis C virus over 15 years ago, scientists have raced to develop diagnostics, study the virus and find new therapies. Yet virtually every attempt to dissect this pathogen has met with roadblocks that impeded progress. Its replication was restricted to humans or experimentally infected chimpanzees, and efficient growth of the virus in cell culture failed until very recently. Nevertheless hard-fought progress has been made and the first wave of antiviral drugs is entering clinical trials.

Journal ArticleDOI
01 Jan 2005-Blood
TL;DR: These studies establish an important link between hemostatic factors and innate immunity and indicate that one mechanism by which the platelet-fibrin(ogen) axis contributes to metastatic potential is by impeding natural killer cell elimination of tumor cells.

Journal ArticleDOI
28 Jan 2005-Science
TL;DR: Lysosomal processing after autophagy may contribute to MHC class II–restricted surveillance of long-lived endogenous antigens including nuclear proteins relevant to disease.
Abstract: CD4+ T cells classically recognize antigens that are endocytosed and processed in lysosomes for presentation on major histocompatibility complex (MHC) class II molecules. Here, endogenous Epstein-Barr virus nuclear antigen 1 (EBNA1) was found to gain access to this pathway by autophagy. On inhibition of lysosomal acidification, EBNA1, the dominant CD4+ T cell antigen of latent Epstein-Barr virus infection, slowly accumulated in cytosolic autophagosomes. In addition, inhibition of autophagy decreased recognition by EBNA1-specific CD4+ T cell clones. Thus, lysosomal processing after autophagy may contribute to MHC class II-restricted surveillance of long-lived endogenous antigens including nuclear proteins relevant to disease.

Journal ArticleDOI
17 Jun 2005-Cell
TL;DR: The results are the first demonstration that a WD40-repeat protein acts as a module for recognition of a specific histone modification and suggest a mechanism for reading and writing an epigenetic mark for gene activation.

Journal ArticleDOI
TL;DR: Interactions of activators, repressors, helper molecules and RNAP are described by a single function, the "regulation factor", which culminates in an expression for the probability of RNA polymerase binding at the promoter of interest as a function of the number of regulatory proteins in the cell.

Journal ArticleDOI
TL;DR: It is shown that prokaryotic and eukaryotic-like isoforms of the glyoxylate cycle enzyme isocitrate lyase (ICL) are jointly required for fatty acid catabolism and virulence in Mycobacterium tuberculosis.
Abstract: Genes involved in fatty acid catabolism have undergone extensive duplication in the genus Mycobacterium, which includes the etiologic agents of leprosy and tuberculosis Here, we show that prokaryotic- and eukaryotic-like isoforms of the glyoxylate cycle enzyme isocitrate lyase (ICL) are jointly required for fatty acid catabolism and virulence in Mycobacterium tuberculosis Although deletion of icl1 or icl2, the genes that encode ICL1 and ICL2, respectively, had little effect on bacterial growth in macrophages and mice, deletion of both genes resulted in complete impairment of intracellular replication and rapid elimination from the lungs The feasibility of targeting ICL1 and ICL2 for chemical inhibition was shown using a dual-specific ICL inhibitor, which blocked growth of M tuberculosis on fatty acids and in macrophages The absence of ICL orthologs in mammals should facilitate the development of glyoxylate cycle inhibitors as new drugs for the treatment of tuberculosis

Journal ArticleDOI
TL;DR: SLE is associated with abnormal early B cell tolerance, and 25–50% of the mature naive B cells in SLE patients produce self-reactive antibodies even before they participate in immune responses as compared with 5–20% in controls.
Abstract: A cardinal feature of systemic lupus erythematosus (SLE) is the development of autoantibodies. The first autoantibodies described in patients with SLE were those specific for nuclei and DNA, but subsequent work has shown that individuals with this disease produce a panoply of different autoantibodies. Thus, one of the constant features of SLE is a profound breakdown in tolerance in the antibody system. The appearance of self-reactive antibodies in SLE precedes clinical disease, but where in the B cell pathway tolerance is first broken has not been defined. In healthy humans, autoantibodies are removed from the B cell repertoire in two discrete early checkpoints in B cell development. We found these checkpoints to be defective in three adolescent patients with SLE. 25-50% of the mature naive B cells in SLE patients produce self-reactive antibodies even before they participate in immune responses as compared with 5-20% in controls. We conclude that SLE is associated with abnormal early B cell tolerance.

Journal ArticleDOI
TL;DR: The hippocampal formation expresses high levels of adrenal steroid receptors and is a malleable brain structure that is important for certain types of learning and memory, but is also vulnerable to the effects of stress and trauma.
Abstract: The hippocampal formation expresses high levels of adrenal steroid receptors and is a malleable brain structure that is important for certain types of learning and memory. It is also vulnerable to the effects of stress and trauma. The amygdala is an important target of stress and mediates physiological and behavioral responses associated with fear and strong emotions. The prefrontal cortex plays an important role in working memory and executive function and is also involved in extinction of learning. All 3 regions are targets of stress hormones, and stress is known to precipitate and exacerbate mood disorders. In long-term depressive illness, the hippocampus and prefrontal cortex undergo atrophy, whereas the amygdala is hyperactive in anxiety and mood disorders and may undergo a biphasic change in structure—increasing in size in acute depression and shrinking on long-term depression. In animal models of acute and chronic stress, neurons in the hippocampus and prefrontal cortex respond to repeated stress by showing atrophy that leads to memory impairment, whereas neurons in amygdala show a growth response that leads to increased anxiety and aggression. Yet, these are not necessarily “damaged” and may be treatable with the right medications. The mechanisms that distinguish between protection and damage of brain cells from stress are discussed in this context.

Journal ArticleDOI
05 May 2005-Nature
TL;DR: It is shown that the vertebrate kinesin-5 Eg5 drives the sliding of microtubules depending on their relative orientation, and in controlled in vitro assays that Eg5 has the remarkable capability of simultaneously moving at ∼20 nm s-1 towards the plus-ends of each of the two microtubule it crosslinks.
Abstract: During cell division, mitotic spindles are assembled by microtubule-based motor proteins. The bipolar organization of spindles is essential for proper segregation of chromosomes, and requires plus-end-directed homotetrameric motor proteins of the widely conserved kinesin-5 (BimC) family. Hypotheses for bipolar spindle formation include the 'push-pull mitotic muscle' model, in which kinesin-5 and opposing motor proteins act between overlapping microtubules. However, the precise roles of kinesin-5 during this process are unknown. Here we show that the vertebrate kinesin-5 Eg5 drives the sliding of microtubules depending on their relative orientation. We found in controlled in vitro assays that Eg5 has the remarkable capability of simultaneously moving at approximately 20 nm s(-1) towards the plus-ends of each of the two microtubules it crosslinks. For anti-parallel microtubules, this results in relative sliding at approximately 40 nm s(-1), comparable to spindle pole separation rates in vivo. Furthermore, we found that Eg5 can tether microtubule plus-ends, suggesting an additional microtubule-binding mode for Eg5. Our results demonstrate how members of the kinesin-5 family are likely to function in mitosis, pushing apart interpolar microtubules as well as recruiting microtubules into bundles that are subsequently polarized by relative sliding.

Journal ArticleDOI
17 Jun 2005-Cell
TL;DR: An activator-based mechanism for joint MLL1 and MOF recruitment and targetedmethylation and acetylation is indicated and a molecular explanation for the closely correlated distribution of H3 K4 methylation and H4 K16 acetylations on active genes is provided.