scispace - formally typeset
Search or ask a question
Institution

Rockefeller University

EducationNew York, New York, United States
About: Rockefeller University is a education organization based out in New York, New York, United States. It is known for research contribution in the topics: Population & Gene. The organization has 15867 authors who have published 32938 publications receiving 2940261 citations. The organization is also known as: Rockefeller University & Rockefeller Institute.
Topics: Population, Gene, Virus, Antigen, Receptor


Papers
More filters
Journal ArticleDOI
17 Oct 2008-Cell
TL;DR: The identification of an undifferentiated adipocyte precursor subpopulation resident within the adipose tissue stroma that is capable of proliferating and differentiating into an adipose depot in vivo is provided.

836 citations

Journal ArticleDOI
14 Nov 2003-Science
TL;DR: By 2050, the human population will probably be larger by 2 to 4 billion people, more slowly growing (declining in the more developed regions), more urban, especially in less developed regions, and older than in the 20th century.
Abstract: By 2050, the human population will probably be larger by 2 to 4 billion people, more slowly growing (declining in the more developed regions), more urban, especially in less developed regions, and older than in the 20th century. Two major demographic uncertainties in the next 50 years concern international migration and the structure of families. Economies, nonhuman environments, and cultures (including values, religions, and politics) strongly influence demographic changes. Hence, human choices, individual and collective, will have demographic effects, intentional or otherwise.

835 citations

Journal ArticleDOI
TL;DR: Investigation of the secretory cycle of the guinea pig pancreas by cell fractionation procedures applied to pancreatic slices incubated in vitro provides direct evidence that secretory proteins are transported from the cisternae of the rough ER to condensing vacuoles via the small vesicles of the Golgi complex.
Abstract: It has been established by electron microscopic radioautography of guinea pig pancreatic exocrine cells (Caro and Palade, 1964) that secretory proteins are transported from the elements of the rough-surfaced endoplasmic reticulum (ER) to condensing vacuoles of the Golgi complex possibly via small vesicles located in the periphery of the complex. To define more clearly the role of these vesicles in the intracellular transport of secretory proteins, we have investigated the secretory cycle of the guinea pig pancreas by cell fractionation procedures applied to pancreatic slices incubated in vitro. Such slices remain viable for 3 hr and incur minimal structural damage in this time. Their secretory proteins can be labeled with radioactive amino acids in short, well defined pulses which, followed by cell fractionation, makes possible a kinetic analysis of transport. To determine the kinetics of transport, we pulse-labeled sets of slices for 3 min with leucine-(14)C and incubated them for further +7, +17, and +57 min in chase medium. At each time, smooth microsomes ( = peripheral elements of the Golgi complex) and rough microsomes ( = elements of the rough ER) were isolated from the slices by density gradient centrifugation of the total microsomal fraction. Labeled proteins appeared initially (end of pulse) in the rough microsomes and were subsequently transferred during incubation in chase medium to the smooth microsomes, reaching a maximal concentration in this fraction after +7 min chase incubation. Later, labeled proteins left the smooth microsomes to appear in the zymogen granule fraction. These data provide direct evidence that secretory proteins are transported from the cisternae of the rough ER to condensing vacuoles via the small vesicles of the Golgi complex.

833 citations

Journal ArticleDOI
28 Jan 2005-Science
TL;DR: Lysosomal processing after autophagy may contribute to MHC class II–restricted surveillance of long-lived endogenous antigens including nuclear proteins relevant to disease.
Abstract: CD4+ T cells classically recognize antigens that are endocytosed and processed in lysosomes for presentation on major histocompatibility complex (MHC) class II molecules. Here, endogenous Epstein-Barr virus nuclear antigen 1 (EBNA1) was found to gain access to this pathway by autophagy. On inhibition of lysosomal acidification, EBNA1, the dominant CD4+ T cell antigen of latent Epstein-Barr virus infection, slowly accumulated in cytosolic autophagosomes. In addition, inhibition of autophagy decreased recognition by EBNA1-specific CD4+ T cell clones. Thus, lysosomal processing after autophagy may contribute to MHC class II-restricted surveillance of long-lived endogenous antigens including nuclear proteins relevant to disease.

832 citations

Journal ArticleDOI
12 Mar 1992-Nature
TL;DR: The results indicate that the topographic reorganization within the cortex was largely due to synaptic changes intrinsic to the cortex, perhaps through the plexus of long-range horizontal connections.
Abstract: THE adult brain has a remarkable ability to adjust to changes in sensory input. Removal of afferent input to the somatosensory, auditory, motor or visual cortex results in a marked change of cortical topography1–10. Changes in sensory activity can, over a period of months, alter receptive field size and cortical topography11. Here we remove visual input by focal binocular retinal lesions and record from the same cortical sites before and within minutes after making the lesion and find immediate striking increases in receptive field size for cortical cells with receptive fields near the edge of the retinal scotoma. After a few months even the cortical areas that were initially silenced by the lesion recover visual activity, representing retinotopic loci surrounding the lesion. At the level of the lateral geniculate nucleus, which provides the visual input to the striate cortex, a large silent region remains. Furthermore, anatomical studies show that the spread of geniculocortical afferents is insufficient to account for the cortical recovery. The results indicate that the topographic reorganization within the cortex was largely due to synaptic changes intrinsic to the cortex, perhaps through the plexus of long-range horizontal connections.

830 citations


Authors

Showing all 15925 results

NameH-indexPapersCitations
Bruce S. McEwen2151163200638
David Baltimore203876162955
Ronald M. Evans199708166722
Lewis C. Cantley196748169037
Ronald Klein1941305149140
Scott M. Grundy187841231821
Jie Zhang1784857221720
Andrea Bocci1722402176461
Ralph M. Steinman171453121518
Masayuki Yamamoto1711576123028
Zena Werb168473122629
Nahum Sonenberg167647104053
Michel C. Nussenzweig16551687665
Harvey F. Lodish165782101124
Dennis R. Burton16468390959
Network Information
Related Institutions (5)
Howard Hughes Medical Institute
34.6K papers, 5.2M citations

95% related

Scripps Research Institute
32.8K papers, 2.9M citations

94% related

National Institutes of Health
297.8K papers, 21.3M citations

94% related

University of Texas Southwestern Medical Center
75.2K papers, 4.4M citations

92% related

Yale University
220.6K papers, 12.8M citations

92% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202314
202284
2021873
2020792
2019716
2018767