scispace - formally typeset
Search or ask a question
Institution

Technical University of Berlin

EducationBerlin, Germany
About: Technical University of Berlin is a education organization based out in Berlin, Germany. It is known for research contribution in the topics: Laser & Catalysis. The organization has 27292 authors who have published 59342 publications receiving 1414623 citations. The organization is also known as: Technische Universität Berlin & TU Berlin.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a classification of discrete integrable systems on quad-graphs is given, i.e. on surface cell decompositions with quadrilateral faces, and the notion of integrability laid in the basis of the classification is the three-dimensional consistency.
Abstract: A classification of discrete integrable systems on quad–graphs, i.e. on surface cell decompositions with quadrilateral faces, is given. The notion of integrability laid in the basis of the classification is the three–dimensional consistency. This property yields, among other features, the existence of the discrete zero curvature representation with a spectral parameter. For all integrable systems of the obtained exhaustive list, the so called three–leg forms are found. This establishes Lagrangian and symplectic structures for these systems, and the connection to discrete systems of the Toda type on arbitrary graphs. Generalizations of these ideas to the three–dimensional integrable systems and to the quantum context are also discussed.

598 citations

Journal ArticleDOI
TL;DR: To perform a risk analysis for the pathogens in drinking water, it is necessary to understand the ecology of these organisms, including newly-recognized pathogens from fecal sources and pathogens that are able to grow in water distribution systems.
Abstract: Emerging pathogens in drinking water have become increasingly important during the decade. These include newly-recognized pathogens from fecal sources such as Cryptosporidium parvum, Campylobacter spp., and rotavirus, as well as pathogens that are able to grow in water distribution systems, like Legionella spp., mycobacteria, and aeromonads. To perform a risk analysis for the pathogens in drinking water, it is necessary to understand the ecology of these organisms. The ecology of the drinking-water distribution system has to be evaluated in detail, especially the diversity and physiological properties of water bacteria. The interactions between water bacteria and (potential) pathogens in such diverse habitats as free water and biofilms are essential for the survival or growth of hygienically relevant organisms in drinking water. Results of epidemiological studies together with ecological data are the basis for effective resource protection, water treatment, and risk assessment.

597 citations

Journal ArticleDOI
TL;DR: Among the five Fe-species identified in these catalysts, only D1 and D3 display catalytic activity for the oxygen reduction reaction (ORR) in the acid medium, with D3 featuring a composite structure with a protonated neighbour basic nitrogen and being by far the most active species.
Abstract: Fe-based catalytic sites for the reduction of oxygen in acidic medium have been identified by 57Fe Mossbauer spectroscopy of Fe/N/C catalysts containing 0.03 to 1.55 wt% Fe, which were prepared by impregnation of iron acetate on carbon black followed by heat-treatment in NH3 at 950 °C. Four different Fe-species were detected at all iron concentrations: three doublets assigned to molecular FeN4-like sites with their ferrous ions in a low (D1), intermediate (D2) or high (D3) spin state, and two other doublets assigned to a single Fe-species (D4 and D5) consisting of surface oxidized nitride nanoparticles (FexN, with x ≤ 2.1). A fifth Fe-species appears only in those catalysts with Fe-contents ≥0.27 wt%. It is characterized by a very broad singlet, which has been assigned to incomplete FeN4-like sites that quickly dissolve in contact with an acid. Among the five Fe-species identified in these catalysts, only D1 and D3 display catalytic activity for the oxygen reduction reaction (ORR) in the acid medium, with D3 featuring a composite structure with a protonated neighbour basic nitrogen and being by far the most active species, with an estimated turn over frequency for the ORR of 11.4 e− per site per s at 0.8 V vs. RHE. Moreover, all D1 sites and between 1/2 and 2/3 of the D3 sites are acid-resistant. A scheme for the mechanism of site formation upon heat-treatment is also proposed. This identification of the ORR-active sites in these catalysts is of crucial importance to design strategies to improve the catalytic activity and stability of these materials.

593 citations

Journal ArticleDOI
TL;DR: The results show how language-specific perceptual processing can alter the relative salience of within- and between-category acoustic variation, and thereby interfere with second language acquisition.

590 citations

Journal ArticleDOI
01 Jul 2013-Geoderma
TL;DR: In this article, the impacts of biochar (BC) and hydrochar (HTC) on water retention characteristics (WRC) as well as on the wettability of sandy soils, using lab and field studies.

586 citations


Authors

Showing all 27602 results

NameH-indexPapersCitations
Markus Antonietti1761068127235
Jian Li133286387131
Klaus-Robert Müller12976479391
Michael Wagner12435154251
Shi Xue Dou122202874031
Xinchen Wang12034965072
Michael S. Feld11955251968
Jian Liu117209073156
Ary A. Hoffmann11390755354
Stefan Grimme113680105087
David M. Karl11246148702
Lester Packer11275163116
Andreas Heinz108107845002
Horst Weller10545144273
G. Hughes10395746632
Network Information
Related Institutions (5)
ETH Zurich
122.4K papers, 5.1M citations

93% related

École Polytechnique Fédérale de Lausanne
98.2K papers, 4.3M citations

93% related

RWTH Aachen University
96.2K papers, 2.5M citations

93% related

Technische Universität München
123.4K papers, 4M citations

92% related

École Normale Supérieure
99.4K papers, 3M citations

92% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023191
2022650
20213,307
20203,387
20193,105
20182,910