scispace - formally typeset
Search or ask a question
Institution

University of California, Irvine

EducationIrvine, California, United States
About: University of California, Irvine is a education organization based out in Irvine, California, United States. It is known for research contribution in the topics: Population & Galaxy. The organization has 47031 authors who have published 113602 publications receiving 5521832 citations. The organization is also known as: UC Irvine & UCI.


Papers
More filters
Journal ArticleDOI
08 Feb 2006-JAMA
TL;DR: Among postmenopausal women, a low-fat dietary pattern did not result in a statistically significant reduction in invasive breast cancer risk over an 8.1-year average follow-up period, and the nonsignificant trends observed indicate that longer, planned, nonintervention follow- up may yield a more definitive comparison.
Abstract: ContextThe hypothesis that a low-fat dietary pattern can reduce breast cancer risk has existed for decades but has never been tested in a controlled intervention trial.ObjectiveTo assess the effects of undertaking a low-fat dietary pattern on breast cancer incidence.Design and SettingA randomized, controlled, primary prevention trial conducted at 40 US clinical centers from 1993 to 2005.ParticipantsA total of 48 835 postmenopausal women, aged 50 to 79 years, without prior breast cancer, including 18.6% of minority race/ethnicity, were enrolled.InterventionsWomen were randomly assigned to the dietary modification intervention group (40% [n = 19 541]) or the comparison group (60% [n = 29 294]). The intervention was designed to promote dietary change with the goals of reducing intake of total fat to 20% of energy and increasing consumption of vegetables and fruit to at least 5 servings daily and grains to at least 6 servings daily. Comparison group participants were not asked to make dietary changes.Main Outcome MeasureInvasive breast cancer incidence.ResultsDietary fat intake was significantly lower in the dietary modification intervention group compared with the comparison group. The difference between groups in change from baseline for percentage of energy from fat varied from 10.7% at year 1 to 8.1% at year 6. Vegetable and fruit consumption was higher in the intervention group by at least 1 serving per day and a smaller, more transient difference was found for grain consumption. The number of women who developed invasive breast cancer (annualized incidence rate) over the 8.1-year average follow-up period was 655 (0.42%) in the intervention group and 1072 (0.45%) in the comparison group (hazard ratio, 0.91; 95% confidence interval, 0.83-1.01 for the comparison between the 2 groups). Secondary analyses suggest a lower hazard ratio among adherent women, provide greater evidence of risk reduction among women having a high-fat diet at baseline, and suggest a dietary effect that varies by hormone receptor characteristics of the tumor.ConclusionsAmong postmenopausal women, a low-fat dietary pattern did not result in a statistically significant reduction in invasive breast cancer risk over an 8.1-year average follow-up period. However, the nonsignificant trends observed suggesting reduced risk associated with a low-fat dietary pattern indicate that longer, planned, nonintervention follow-up may yield a more definitive comparison.Clinical Trials RegistrationClinicalTrials.gov Identifier: NCT00000611

740 citations

Journal ArticleDOI
TL;DR: The Feedback In Realistic Environments (FIRE) project explores feedback in cosmological galaxy formation simulations as mentioned in this paper, which has been used to explore new physics (e.g. magnetic fields).
Abstract: The Feedback In Realistic Environments (FIRE) project explores feedback in cosmological galaxy formation simulations. Previous FIRE simulations used an identical source code (“FIRE-1”) for consistency. Motivated by the development of more accurate numerics – including hydrodynamic solvers, gravitational softening, and supernova coupling algorithms – and exploration of new physics (e.g. magnetic fields), we introduce “FIRE-2”, an updated numerical implementation of FIRE physics for the GIZMO code. We run a suite of simulations and compare against FIRE-1: overall, FIRE-2 improvements do not qualitatively change galaxy-scale properties. We pursue an extensive study of numerics versus physics. Details of the star-formation algorithm, cooling physics, and chemistry have weak effects, provided that we include metal-line cooling and star formation occurs at higher-than-mean densities. We present new resolution criteria for high-resolution galaxy simulations. Most galaxy-scale properties are robust to numerics we test, provided: (1) Toomre masses are resolved; (2) feedback coupling ensures conservation, and (3) individual supernovae are time-resolved. Stellar masses and profiles are most robust to resolution, followed by metal abundances and morphologies, followed by properties of winds and circum-galactic media (CGM). Central (∼kpc) mass concentrations in massive (>L*) galaxies are sensitive to numerics (via trapping/recycling of winds in hot halos). Multiple feedback mechanisms play key roles: supernovae regulate stellar masses/winds; stellar mass-loss fuels late star formation; radiative feedback suppresses accretion onto dwarfs and instantaneous star formation in disks. We provide all initial conditions and numerical algorithms used.

740 citations

Journal ArticleDOI
TL;DR: Several SNR-suboptimal multiple relay selection schemes are proposed, whose complexity is linear in the number of relays and are proved to achieve full diversity.
Abstract: This paper is on relay selection schemes for wireless relay networks. First, we derive the diversity of many single-relay selection schemes in the literature. Then, we generalize the idea of relay selection by allowing more than one relay to cooperate. The SNR-optimal multiple relay selection scheme can be achieved by exhaustive search, whose complexity increases exponentially in the network size. To reduce the complexity, several SNR-suboptimal multiple relay selection schemes are proposed, whose complexity is linear in the number of relays. They are proved to achieve full diversity. Simulation shows that they perform much better than the corresponding single relay selection methods and very close to the SNR-optimal multiple relay selection scheme. In addition, for large networks, these multiple relay selection schemes require the same amount of feedback bits from the receiver as single relay selection schemes.

739 citations

Journal ArticleDOI
TL;DR: The authors describe and apply choice models, including generalizations of logit called mixed logits, that do not exhibit the restrictive "independence from irrelevant alternatives" property and can approximate any substitution pattern.

739 citations


Authors

Showing all 47751 results

NameH-indexPapersCitations
Daniel Levy212933194778
Rob Knight2011061253207
Lewis C. Cantley196748169037
Dennis W. Dickson1911243148488
Terrie E. Moffitt182594150609
Joseph Biederman1791012117440
John R. Yates1771036129029
John A. Rogers1771341127390
Avshalom Caspi170524113583
Yang Gao1682047146301
Carl W. Cotman165809105323
John H. Seinfeld165921114911
Gregg C. Fonarow1611676126516
Jerome I. Rotter1561071116296
David Cella1561258106402
Network Information
Related Institutions (5)
Stanford University
320.3K papers, 21.8M citations

97% related

Columbia University
224K papers, 12.8M citations

97% related

University of Washington
305.5K papers, 17.7M citations

97% related

University of California, Los Angeles
282.4K papers, 15.7M citations

97% related

University of Michigan
342.3K papers, 17.6M citations

97% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20242
2023252
20221,224
20216,519
20206,348
20195,610