scispace - formally typeset
Search or ask a question
Institution

University of California, Irvine

EducationIrvine, California, United States
About: University of California, Irvine is a education organization based out in Irvine, California, United States. It is known for research contribution in the topics: Population & Galaxy. The organization has 47031 authors who have published 113602 publications receiving 5521832 citations. The organization is also known as: UC Irvine & UCI.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors show that despite the variability in PM characteristics, which are believed to influence human health risks, the observed relative health risk estimates per unit PM mass falls within a narrow range of values, and no single chemical species appears to dominate health effects; rather the effects appear to be due to a combination of species.
Abstract: Results of recent research show that particulate matter (PM) composition and size vary widely with both space and time. Despite the variability in PM characteristics, which are believed to influence human health risks, the observed relative health risk estimates per unit PM mass falls within a narrow range of values. Furthermore, no single chemical species appears to dominate health effects; rather the effects appear to be due to a combination of species. Non-PM factors such as socioeconomic status and lifestyle are also believed to affect the health risk, although accounting for these confounding factors is challenging. Airborne PM is also responsible for a number of effects aside from human health, such as alterations in visibility and climate. Because the PM problem is associated with a range of societal issues such as energy production and economic development, making progress on reducing the effects of PM will require integrated strategies that bring together scientists and decision makers from diffe...

725 citations

Journal ArticleDOI
Andrew Shepherd1, Erik R. Ivins2, Eric Rignot3, Ben Smith4, Michiel R. van den Broeke, Isabella Velicogna3, Pippa L. Whitehouse5, Kate Briggs1, Ian Joughin4, Gerhard Krinner6, Sophie Nowicki7, Tony Payne8, Ted Scambos9, Nicole Schlegel2, Geruo A3, Cécile Agosta, Andreas P. Ahlstrøm10, Greg Babonis11, Valentina R. Barletta12, Alejandro Blazquez, Jennifer Bonin13, Beata Csatho11, Richard I. Cullather7, Denis Felikson14, Xavier Fettweis, René Forsberg12, Hubert Gallée6, Alex S. Gardner2, Lin Gilbert15, Andreas Groh16, Brian Gunter17, Edward Hanna18, Christopher Harig19, Veit Helm20, Alexander Horvath21, Martin Horwath16, Shfaqat Abbas Khan12, Kristian K. Kjeldsen10, Hannes Konrad1, Peter L. Langen22, Benoit S. Lecavalier23, Bryant D. Loomis7, Scott B. Luthcke7, Malcolm McMillan1, Daniele Melini24, Sebastian H. Mernild25, Sebastian H. Mernild26, Sebastian H. Mernild27, Yara Mohajerani3, Philip Moore28, Jeremie Mouginot3, Jeremie Mouginot6, Gorka Moyano, Alan Muir15, Thomas Nagler, Grace A. Nield5, Johan Nilsson2, Brice Noël, Ines Otosaka1, Mark E. Pattle, W. Richard Peltier29, Nadege Pie14, Roelof Rietbroek30, Helmut Rott, Louise Sandberg-Sørensen12, Ingo Sasgen20, Himanshu Save14, Bernd Scheuchl3, Ernst Schrama31, Ludwig Schröder16, Ki-Weon Seo32, Sebastian B. Simonsen12, Thomas Slater1, Giorgio Spada33, T. C. Sutterley3, Matthieu Talpe9, Lev Tarasov23, Willem Jan van de Berg, Wouter van der Wal31, Melchior van Wessem, Bramha Dutt Vishwakarma34, David N. Wiese2, Bert Wouters 
14 Jun 2018-Nature
TL;DR: This work combines satellite observations of its changing volume, flow and gravitational attraction with modelling of its surface mass balance to show that the Antarctic Ice Sheet lost 2,720 ± 1,390 billion tonnes of ice between 1992 and 2017, which corresponds to an increase in mean sea level of 7.6‚¬3.9 millimetres.
Abstract: The Antarctic Ice Sheet is an important indicator of climate change and driver of sea-level rise. Here we combine satellite observations of its changing volume, flow and gravitational attraction with modelling of its surface mass balance to show that it lost 2,720 ± 1,390 billion tonnes of ice between 1992 and 2017, which corresponds to an increase in mean sea level of 7.6 ± 3.9 millimetres (errors are one standard deviation). Over this period, ocean-driven melting has caused rates of ice loss from West Antarctica to increase from 53 ± 29 billion to 159 ± 26 billion tonnes per year; ice-shelf collapse has increased the rate of ice loss from the Antarctic Peninsula from 7 ± 13 billion to 33 ± 16 billion tonnes per year. We find large variations in and among model estimates of surface mass balance and glacial isostatic adjustment for East Antarctica, with its average rate of mass gain over the period 1992–2017 (5 ± 46 billion tonnes per year) being the least certain.

725 citations

Journal ArticleDOI
TL;DR: The primary and secondary structures of β‐amyloid that are involved in its in vitro assembly into neurotoxic peptide aggregates are defined and may underlie both its pathological deposition and subsequent degenerative effects in Alzheimer's disease.
Abstract: The neurodegeneration of Alzheimer's disease has been theorized to be mediated, at least in part, by insoluble aggregates of beta-amyloid protein that are widely distributed in the form of plaques throughout brain regions affected by the disease. Previous studies by our laboratory and others have demonstrated that the neurotoxicity of beta-amyloid in vitro is dependent upon its spontaneous adoption of an aggregated structure. In this study, we report extensive structure-activity analyses of a series of peptides derived from both the proposed active fragment of beta-amyloid, beta 25-35, and the full-length protein, beta 1-42. We examine the effects of amino acid residue deletions and substitutions on the ability of beta-amyloid peptides to both form sedimentable aggregates and induce toxicity in cultured hippocampal neurons. We observe that significant levels of peptide aggregation are always associated with significant beta-amyloid-induced neurotoxicity. Further, both N- and C-terminal regions of beta 25-35 appear to contribute to these processes. In particular, significant disruption of peptide aggregation and toxicity result from alterations in the beta 33-35 region. In beta 1-42 peptides, aggregation disruption is evidenced by changes in both electrophoresis profiles and fibril morphology visualized at the light and electron microscope levels. Using circular dichroism analysis in a subset of peptides, we observed classic features of beta-sheet secondary structure in aggregating, toxic beta-amyloid peptides but not in nonaggregating, nontoxic beta-amyloid peptides. Together, these data further define the primary and secondary structures of beta-amyloid that are involved in its in vitro assembly into neurotoxic peptide aggregates and may underlie both its pathological deposition and subsequent degenerative effects in Alzheimer's disease.

725 citations

Journal ArticleDOI
TL;DR: In this article, the authors proposed a framework to integrate biogeochemical processes into designing, implementing, and evaluating the net effectiveness of green infrastructure, and provide examples for GHG mitigation, stormwater runoff mitigation, and improvements in air quality and health.
Abstract: Urban green space is purported to offset greenhouse-gas (GHG) emissions, remove air and water pollutants, cool local climate, and improve public health. To use these services, municipalities have focused efforts on designing and implementing ecosystem-services-based “green infrastructure” in urban environments. In some cases the environmental benefits of this infrastructure have been well documented, but they are often unclear, unquantified, and/or outweighed by potential costs. Quantifying biogeochemical processes in urban green infrastructure can improve our understanding of urban ecosystem services and disservices (negative or unintended consequences) resulting from designed urban green spaces. Here we propose a framework to integrate biogeochemical processes into designing, implementing, and evaluating the net effectiveness of green infrastructure, and provide examples for GHG mitigation, stormwater runoff mitigation, and improvements in air quality and health.

724 citations

Journal ArticleDOI
TL;DR: In this article, a resource-based approach to modeling interrelationships among businesses and applying it to the analysis of corporate economic performance has been proposed to explain the financial performance of large manufacturing firms, and it promises to be an important source of insight into corporate strategy.
Abstract: The resource-based view of the firm has provided important new insights into corporate strategy (Barney, 1991; Peteraf, 1993); however, there has been only limited empirical research linked to the theory (e.g., Farjoun, 1994). Although a great deal of work has been done on Corporate diversification, the measures and data typically have a weak connection to resource-based theory. Empirical research on resource-based corporate strategy has been particularly dificult because key concepts such as tacit knowledge or capabilities resist direct measurement. This study is an effort to narrow the gap between theory and empirical research on the multibusiness firm. It develops a resource-based approach to modeling interrelationships among businesses and applies it to the analysis of corporate economic performance. This approach proves to be significant in explaining the financial performance of large manufacturing firms, and it promises to be an important source of insight into corporate strategy.

723 citations


Authors

Showing all 47751 results

NameH-indexPapersCitations
Daniel Levy212933194778
Rob Knight2011061253207
Lewis C. Cantley196748169037
Dennis W. Dickson1911243148488
Terrie E. Moffitt182594150609
Joseph Biederman1791012117440
John R. Yates1771036129029
John A. Rogers1771341127390
Avshalom Caspi170524113583
Yang Gao1682047146301
Carl W. Cotman165809105323
John H. Seinfeld165921114911
Gregg C. Fonarow1611676126516
Jerome I. Rotter1561071116296
David Cella1561258106402
Network Information
Related Institutions (5)
Stanford University
320.3K papers, 21.8M citations

97% related

Columbia University
224K papers, 12.8M citations

97% related

University of Washington
305.5K papers, 17.7M citations

97% related

University of California, Los Angeles
282.4K papers, 15.7M citations

97% related

University of Michigan
342.3K papers, 17.6M citations

97% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20242
2023252
20221,224
20216,519
20206,348
20195,610