scispace - formally typeset
Search or ask a question
Institution

University of Geneva

EducationGeneva, Switzerland
About: University of Geneva is a education organization based out in Geneva, Switzerland. It is known for research contribution in the topics: Population & Galaxy. The organization has 26887 authors who have published 65265 publications receiving 2931373 citations. The organization is also known as: Geneva University & Universite de Geneve.


Papers
More filters
Journal ArticleDOI
24 Aug 1978-Nature
TL;DR: It is suggested that the hotspots in the lacI gene of Escherichia coli may result from the spontaneous deamination of 5-methylcytosine to thymine, which is not excised by the enzyme DNA-uracil glycosidase.
Abstract: In the lacI gene of Escherichia coli spontaneous base substituion hotspots occur at 5-methylcytosine residues. The hotspots disappear when the respective cytosines are not methylated. We suggest that the hotspots may result from the spontaneous deamination of 5-methylcytosine to thymine, which is not excised by the enzyme DNA-uracil glycosidase.

1,137 citations

Journal ArticleDOI
TL;DR: This work proposes the “A/T/N” system, a descriptive system for categorizing multidomain biomarker findings at the individual person level in a format that is easy to understand and use and suited to population studies of cognitive aging.
Abstract: Biomarkers have become an essential component of Alzheimer disease (AD) research and because of the pervasiveness of AD pathology in the elderly, the same biomarkers are used in cognitive aging research. A number of current issues suggest that an unbiased descriptive classification scheme for these biomarkers would be useful. We propose the "A/T/N" system in which 7 major AD biomarkers are divided into 3 binary categories based on the nature of the pathophysiology that each measures. "A" refers to the value of a β-amyloid biomarker (amyloid PET or CSF Aβ42); "T," the value of a tau biomarker (CSF phospho tau, or tau PET); and "N," biomarkers of neurodegeneration or neuronal injury ([(18)F]-fluorodeoxyglucose-PET, structural MRI, or CSF total tau). Each biomarker category is rated as positive or negative. An individual score might appear as A+/T+/N-, or A+/T-/N-, etc. The A/T/N system includes the new modality tau PET. It is agnostic to the temporal ordering of mechanisms underlying AD pathogenesis. It includes all individuals in any population regardless of the mix of biomarker findings and therefore is suited to population studies of cognitive aging. It does not specify disease labels and thus is not a diagnostic classification system. It is a descriptive system for categorizing multidomain biomarker findings at the individual person level in a format that is easy to understand and use. Given the present lack of consensus among AD specialists on terminology across the clinically normal to dementia spectrum, a biomarker classification scheme will have broadest acceptance if it is independent from any one clinically defined diagnostic scheme.

1,131 citations

Journal ArticleDOI
08 May 2015-Science
TL;DR: Tissues exhibit characteristic transcriptional signatures that show stability in postmortem samples that are dominated by a relatively small number of genes, though few are exclusive to a particular tissue and vary more across tissues than individuals.
Abstract: Transcriptional regulation and posttranscriptional processing underlie many cellular and organismal phenotypes. We used RNA sequence data generated by Genotype-Tissue Expression (GTEx) project to investigate the patterns of transcriptome variation across individuals and tissues. Tissues exhibit characteristic transcriptional signatures that show stability in postmortem samples. These signatures are dominated by a relatively small number of genes—which is most clearly seen in blood—though few are exclusive to a particular tissue and vary more across tissues than individuals. Genes exhibiting high interindividual expression variation include disease candidates associated with sex, ethnicity, and age. Primary transcription is the major driver of cellular specificity, with splicing playing mostly a complementary role; except for the brain, which exhibits a more divergent splicing program. Variation in splicing, despite its stochasticity, may play in contrast a comparatively greater role in defining individual phenotypes.

1,131 citations

Journal ArticleDOI
TL;DR: This work uses two novel and specific mTOR kinase domain inhibitors (PP242 and PP30) to show that pharmacological inhibition of mTOR blocks the phosphorylation of Akt at S473 and prevents its full activation, and shows that the TORKinib PP242 is a more effective mTORC1 inhibitor than rapamycin.
Abstract: The mammalian target of rapamycin (mTOR) regulates cell growth and survival by integrating nutrient and hormonal signals These signaling functions are distributed between at least two distinct mTOR protein complexes: mTORC1 and mTORC2 mTORC1 is sensitive to the selective inhibitor rapamycin and activated by growth factor stimulation via the canonical phosphoinositide 3-kinase (PI3K)-->Akt-->mTOR pathway Activated mTORC1 kinase up-regulates protein synthesis by phosphorylating key regulators of mRNA translation By contrast, mTORC2 is resistant to rapamycin Genetic studies have suggested that mTORC2 may phosphorylate Akt at S473, one of two phosphorylation sites required for Akt activation; this has been controversial, in part because RNA interference and gene knockouts produce distinct Akt phospho-isoforms The central role of mTOR in controlling key cellular growth and survival pathways has sparked interest in discovering mTOR inhibitors that bind to the ATP site and therefore target both mTORC2 and mTORC1 We investigated mTOR signaling in cells and animals with two novel and specific mTOR kinase domain inhibitors (TORKinibs) Unlike rapamycin, these TORKinibs (PP242 and PP30) inhibit mTORC2, and we use them to show that pharmacological inhibition of mTOR blocks the phosphorylation of Akt at S473 and prevents its full activation Furthermore, we show that TORKinibs inhibit proliferation of primary cells more completely than rapamycin Surprisingly, we find that mTORC2 is not the basis for this enhanced activity, and we show that the TORKinib PP242 is a more effective mTORC1 inhibitor than rapamycin Importantly, at the molecular level, PP242 inhibits cap-dependent translation under conditions in which rapamycin has no effect Our findings identify new functional features of mTORC1 that are resistant to rapamycin but are effectively targeted by TORKinibs These potent new pharmacological agents complement rapamycin in the study of mTOR and its role in normal physiology and human disease

1,129 citations


Authors

Showing all 27203 results

NameH-indexPapersCitations
JoAnn E. Manson2701819258509
Joseph L. Goldstein207556149527
Kari Stefansson206794174819
David Baltimore203876162955
Mark I. McCarthy2001028187898
Michael S. Brown185422123723
Yang Gao1682047146301
Napoleone Ferrara167494140647
Marc Weber1672716153502
Alessandro Melchiorri151674116384
Andrew D. Hamilton1511334105439
David P. Strachan143472105256
Andrew Beretvas1411985110059
Rainer Wallny1411661105387
Josh Moss139101989255
Network Information
Related Institutions (5)
Max Planck Society
406.2K papers, 19.5M citations

93% related

University of Oxford
258.1K papers, 12.9M citations

93% related

University College London
210.6K papers, 9.8M citations

93% related

Centre national de la recherche scientifique
382.4K papers, 13.6M citations

93% related

Yale University
220.6K papers, 12.8M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023171
2022520
20214,280
20204,142
20193,581
20183,395