scispace - formally typeset
Search or ask a question
Institution

University of Geneva

EducationGeneva, Switzerland
About: University of Geneva is a education organization based out in Geneva, Switzerland. It is known for research contribution in the topics: Population & Galaxy. The organization has 26887 authors who have published 65265 publications receiving 2931373 citations. The organization is also known as: Geneva University & Universite de Geneve.


Papers
More filters
Journal ArticleDOI
TL;DR: The cleavage by OMA1 causes an accumulation of the short OPA1 variants, and the role ofm-AAA proteases in ensuring a balance of long and short Opa1 isoforms is investigated.
Abstract: Mitochondrial fusion depends on the dynamin-like guanosine triphosphatase OPA1, whose activity is controlled by proteolytic cleavage. Dysfunction of mitochondria induces OPA1 processing and results in mitochondrial fragmentation, allowing the selective removal of damaged mitochondria. In this study, we demonstrate that two classes of metallopeptidases regulate OPA1 cleavage in the mitochondrial inner membrane: isoenzymes of the adenosine triphosphate (ATP)-dependent matrix AAA (ATPase associated with diverse cellular activities [m-AAA]) protease, variable assemblies of the conserved subunits paraplegin, AFG3L1 and -2, and the ATP-independent peptidase OMA1. Functionally redundant isoenzymes of the m-AAA protease ensure the balanced accumulation of long and short isoforms of OPA1 required for mitochondrial fusion. The loss of AFG3L2 in mouse tissues, down-regulation of AFG3L1 and -2 in mouse embryonic fibroblasts, or the expression of a dominant-negative AFG3L2 variant in human cells decreases the stability of long OPA1 isoforms and induces OPA1 processing by OMA1. Moreover, cleavage by OMA1 causes the accumulation of short OPA1 variants if mitochondrial DNA is depleted or mitochondrial activities are impaired. Our findings link distinct peptidases to constitutive and induced OPA1 processing and shed new light on the pathogenesis of neurodegenerative disorders associated with mutations in m-AAA protease subunits.

510 citations

Journal ArticleDOI
04 Apr 2018-Nature
TL;DR: Analysis of changes in plant species richness on mountain summits over the past 145 years suggests that increased climatic warming has led to an acceleration in species richness increase, strikingly synchronized with accelerated global warming.
Abstract: Globally accelerating trends in societal development and human environmental impacts since the mid-twentieth century 1–7 are known as the Great Acceleration and have been discussed as a key indicator of the onset of the Anthropocene epoch 6 . While reports on ecological responses (for example, changes in species range or local extinctions) to the Great Acceleration are multiplying 8, 9 , it is unknown whether such biotic responses are undergoing a similar acceleration over time. This knowledge gap stems from the limited availability of time series data on biodiversity changes across large temporal and geographical extents. Here we use a dataset of repeated plant surveys from 302 mountain summits across Europe, spanning 145 years of observation, to assess the temporal trajectory of mountain biodiversity changes as a globally coherent imprint of the Anthropocene. We find a continent-wide acceleration in the rate of increase in plant species richness, with five times as much species enrichment between 2007 and 2016 as fifty years ago, between 1957 and 1966. This acceleration is strikingly synchronized with accelerated global warming and is not linked to alternative global change drivers. The accelerating increases in species richness on mountain summits across this broad spatial extent demonstrate that acceleration in climate-induced biotic change is occurring even in remote places on Earth, with potentially far-ranging consequences not only for biodiversity, but also for ecosystem functioning and services.

508 citations

Journal ArticleDOI
TL;DR: The hypotheses tested were that the bond strength of adhesive cements to root canal dentin would be reduced as a function of configuration factor, polymerization process and type of luting material and dentin will be lowered near the apex of the tooth.

508 citations


Authors

Showing all 27203 results

NameH-indexPapersCitations
JoAnn E. Manson2701819258509
Joseph L. Goldstein207556149527
Kari Stefansson206794174819
David Baltimore203876162955
Mark I. McCarthy2001028187898
Michael S. Brown185422123723
Yang Gao1682047146301
Napoleone Ferrara167494140647
Marc Weber1672716153502
Alessandro Melchiorri151674116384
Andrew D. Hamilton1511334105439
David P. Strachan143472105256
Andrew Beretvas1411985110059
Rainer Wallny1411661105387
Josh Moss139101989255
Network Information
Related Institutions (5)
Max Planck Society
406.2K papers, 19.5M citations

93% related

University of Oxford
258.1K papers, 12.9M citations

93% related

University College London
210.6K papers, 9.8M citations

93% related

Centre national de la recherche scientifique
382.4K papers, 13.6M citations

93% related

Yale University
220.6K papers, 12.8M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023171
2022520
20214,280
20204,142
20193,581
20183,395