scispace - formally typeset
Search or ask a question
Institution

University of Geneva

EducationGeneva, Switzerland
About: University of Geneva is a education organization based out in Geneva, Switzerland. It is known for research contribution in the topics: Population & Galaxy. The organization has 26887 authors who have published 65265 publications receiving 2931373 citations. The organization is also known as: Geneva University & Universite de Geneve.


Papers
More filters
Journal ArticleDOI
TL;DR: This work proposes a community standard data model for the representation and exchange of protein interaction data, jointly developed by members of the Proteomics Standards Initiative (PSI) and the Human Proteome Organization (HUPO).
Abstract: A major goal of proteomics is the complete description of the protein interaction network underlying cell physiology. A large number of small scale and, more recently, large-scale experiments have contributed to expanding our understanding of the nature of the interaction network. However, the necessary data integration across experiments is currently hampered by the fragmentation of publicly available protein interaction data, which exists in different formats in databases, on authors' websites or sometimes only in print publications. Here, we propose a community standard data model for the representation and exchange of protein interaction data. This data model has been jointly developed by members of the Proteomics Standards Initiative (PSI), a work group of the Human Proteome Organization (HUPO), and is supported by major protein interaction data providers, in particular the Biomolecular Interaction Network Database (BIND), Cellzome (Heidelberg, Germany), the Database of Interacting Proteins (DIP), Dana Farber Cancer Institute (Boston, MA, USA), the Human Protein Reference Database (HPRD), Hybrigenics (Paris, France), the European Bioinformatics Institute's (EMBL-EBI, Hinxton, UK) IntAct, the Molecular Interactions (MINT, Rome, Italy) database, the Protein-Protein Interaction Database (PPID, Edinburgh, UK) and the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING, EMBL, Heidelberg, Germany).

658 citations

Journal ArticleDOI
TL;DR: The genomic structure of NIPBL is characterized and it is found that it is widely expressed in fetal and adult tissues and facilitates enhancer-promoter communication and regulates Notch signaling and other developmental pathways in Drosophila melanogaster.
Abstract: Cornelia de Lange syndrome (CdLS; OMIM 122470) is a dominantly inherited multisystem developmental disorder characterized by growth and cognitive retardation; abnormalities of the upper limbs; gastroesophageal dysfunction; cardiac, ophthalmologic and genitourinary anomalies; hirsutism; and characteristic facial features. Genital anomalies, pyloric stenosis, congenital diaphragmatic hernias, cardiac septal defects, hearing loss and autistic and self-injurious tendencies also frequently occur. Prevalence is estimated to be as high as 1 in 10,000 (ref. 4). We carried out genome-wide linkage exclusion analysis in 12 families with CdLS and identified four candidate regions, of which chromosome 5p13.1 gave the highest multipoint lod score of 2.7. This information, together with the previous identification of a child with CdLS with a de novo t(5;13)(p13.1;q12.1) translocation, allowed delineation of a 1.1-Mb critical region on chromosome 5 for the gene mutated in CdLS. We identified mutations in one gene in this region, which we named NIPBL, in four sporadic and two familial cases of CdLS. We characterized the genomic structure of NIPBL and found that it is widely expressed in fetal and adult tissues. The fly homolog of NIPBL, Nipped-B, facilitates enhancer-promoter communication and regulates Notch signaling and other developmental pathways in Drosophila melanogaster.

658 citations

Journal ArticleDOI
TL;DR: A role for MyD88 as an adapter in IL-1 signal transduction is supported; MyD 88 forms homodimers in vivo through DD-DD and Toll-Toll interactions.

657 citations

Journal ArticleDOI
TL;DR: A mathematical expression is derived to compute PrediXcan results using summary data, and the effects of gene expression variation on human phenotypes in 44 GTEx tissues and >100 phenotypes are investigated.
Abstract: Scalable, integrative methods to understand mechanisms that link genetic variants with phenotypes are needed. Here we derive a mathematical expression to compute PrediXcan (a gene mapping approach) results using summary data (S-PrediXcan) and show its accuracy and general robustness to misspecified reference sets. We apply this framework to 44 GTEx tissues and 100+ phenotypes from GWAS and meta-analysis studies, creating a growing public catalog of associations that seeks to capture the effects of gene expression variation on human phenotypes. Replication in an independent cohort is shown. Most of the associations are tissue specific, suggesting context specificity of the trait etiology. Colocalized significant associations in unexpected tissues underscore the need for an agnostic scanning of multiple contexts to improve our ability to detect causal regulatory mechanisms. Monogenic disease genes are enriched among significant associations for related traits, suggesting that smaller alterations of these genes may cause a spectrum of milder phenotypes.

657 citations

Journal ArticleDOI
TL;DR: Genomic aberrations increase with age, highlighting the infant population as biologically and clinically distinct, and co-segregating mutations in histone-mutant subgroups including loss of FBXW7 in H 3.3G34R/V, TOP3A rearrangements in H3.3K27M, and BCOR mutations in H2.1K 27M are identified.

655 citations


Authors

Showing all 27203 results

NameH-indexPapersCitations
JoAnn E. Manson2701819258509
Joseph L. Goldstein207556149527
Kari Stefansson206794174819
David Baltimore203876162955
Mark I. McCarthy2001028187898
Michael S. Brown185422123723
Yang Gao1682047146301
Napoleone Ferrara167494140647
Marc Weber1672716153502
Alessandro Melchiorri151674116384
Andrew D. Hamilton1511334105439
David P. Strachan143472105256
Andrew Beretvas1411985110059
Rainer Wallny1411661105387
Josh Moss139101989255
Network Information
Related Institutions (5)
Max Planck Society
406.2K papers, 19.5M citations

93% related

University of Oxford
258.1K papers, 12.9M citations

93% related

University College London
210.6K papers, 9.8M citations

93% related

Centre national de la recherche scientifique
382.4K papers, 13.6M citations

93% related

Yale University
220.6K papers, 12.8M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023171
2022520
20214,280
20204,142
20193,581
20183,395