scispace - formally typeset
Search or ask a question
Institution

University of Geneva

EducationGeneva, Switzerland
About: University of Geneva is a education organization based out in Geneva, Switzerland. It is known for research contribution in the topics: Population & Galaxy. The organization has 26887 authors who have published 65265 publications receiving 2931373 citations. The organization is also known as: Geneva University & Universite de Geneve.


Papers
More filters
Journal ArticleDOI
TL;DR: The results suggest that regulatory polymorphism is widespread in the human genome and show that the 5-kb (phase I) HapMap has sufficient density to enable linkage disequilibrium mapping in humans.
Abstract: The exploration of quantitative variation in human populations has become one of the major priorities for medical genetics. The successful identification of variants that contribute to complex traits is highly dependent on reliable assays and genetic maps. We have performed a genome-wide quantitative trait analysis of 630 genes in 60 unrelated Utah residents with ancestry from Northern and Western Europe using the publicly available phase I data of the International HapMap project. The genes are located in regions of the human genome with elevated functional annotation and disease interest including the ENCODE regions spanning 1% of the genome, Chromosome 21 and Chromosome 20q12–13.2. We apply three different methods of multiple test correction, including Bonferroni, false discovery rate, and permutations. For the 374 expressed genes, we find many regions with statistically significant association of single nucleotide polymorphisms (SNPs) with expression variation in lymphoblastoid cell lines after correcting for multiple tests. Based on our analyses, the signal proximal (cis-) to the genes of interest is more abundant and more stable than distal and trans across statistical methodologies. Our results suggest that regulatory polymorphism is widespread in the human genome and show that the 5-kb (phase I) HapMap has sufficient density to enable linkage disequilibrium mapping in humans. Such studies will significantly enhance our ability to annotate the non-coding part of the genome and interpret functional variation. In addition, we demonstrate that the HapMap cell lines themselves may serve as a useful resource for quantitative measurements at the cellular level.

553 citations

Journal ArticleDOI
TL;DR: An overview of electrical microstates in the brain, which are defined as successive short time periods during which the configuration of the scalp potential field remains semi‐stable, suggests quasi‐simultaneity of activity among the nodes of large‐scale networks.

552 citations

Journal ArticleDOI
TL;DR: A genome-wide scan for schizophrenia susceptibility loci (SSL) using 452 microsatellite markers on 54 multiplex pedigrees is presented and it is more probable that chromosome 8 may be a false positive linkage.
Abstract: Schizophrenia is a common disorder characterized by psychotic symptoms; diagnostic criteria have been established. Family, twin and adoption studies suggest that both genetic and environmental factors influence susceptibility (heritability is approximately 71%; ref. 2), however, little is known about the aetiology of schizophrenia. Clinical and family studies suggest aetiological heterogeneity. Previously, we reported that regions on chromosomes 22, 3 and 8 may be associated with susceptibility to schizophrenia, and collaborations provided some support for regions on chromosomes 8 and 22 (refs 9-13). We present here a genome-wide scan for schizophrenia susceptibility loci (SSL) using 452 microsatellite markers on 54 multiplex pedigrees. Non-parametric linkage (NPL) analysis provided significant evidence for an SSL on chromosome 13q32 (NPL score=4.18; P=0.00002), and suggestive evidence for another SSL on chromosome 8p21-22 (NPL=3.64; P=0.0001). Parametric linkage analysis provided additional support for these SSL. Linkage evidence at chromosome 8 is weaker than that at chromosome 13, so it is more probable that chromosome 8 may be a false positive linkage. Additional putative SSL were noted on chromosomes 14q13 (NPL=2.57; P=0.005), 7q11 (NPL=2.50, P=0.007) and 22q11 (NPL=2.42, P=0.009). Verification of suggestive SSL on chromosomes 13q and 8p was attempted in a follow-up sample of 51 multiplex pedigrees. This analysis confirmed the SSL in 13q14-q33 (NPL=2.36, P=0.007) and supported the SSL in 8p22-p21 (NPL=1.95, P=0.023).

552 citations

Journal ArticleDOI
TL;DR: Although correctly initiated transcripts from the LAP gene accumulate in the six examined tissues--liver, lung, spleen, kidney, brain, and testis--LAP protein is highly enriched in liver nuclei, the preferential accumulation of LAP protein in liver appears to be regulated post-transcriptionally.
Abstract: A gene, encoding a liver-enriched transcriptional activator protein (LAP) has been isolated. LAP is a 32-kD protein that stimulates the transcription of chimeric genes containing albumin D-promoter elements both in vivo and in vitro. LAP shares extensive sequence homology (71%) in its DNA-binding and leucine zipper domains with C/EBP. As a consequence, these two proteins show an indistinguishable DNA-binding specificity and readily heterodimerize. In addition, both genes, lap and cebp, are devoid of intervening sequences. Although correctly initiated transcripts from the LAP gene accumulate in the six examined tissues--liver, lung, spleen, kidney, brain, and testis--LAP protein is highly enriched in liver nuclei. Thus, the preferential accumulation of LAP protein in liver appears to be regulated post-transcriptionally.

551 citations

Journal ArticleDOI
TL;DR: The development of treatments for Alzheimer's disease during the past 30 years is reviewed, considering the drugs, potential targets, late‐stage clinical trials, development methods, emerging use of biomarkers and evolution of regulatory considerations to summarize advances and anticipate future developments.
Abstract: The modern era of drug development for Alzheimer's disease began with the proposal of the cholinergic hypothesis of memory impairment and the 1984 research criteria for Alzheimer's disease. Since then, despite the evaluation of numerous potential treatments in clinical trials, only four cholinesterase inhibitors and memantine have shown sufficient safety and efficacy to allow marketing approval at an international level. Although this is probably because the other drugs tested were ineffective, inadequate clinical development methods have also been blamed for the failures. Here, we review the development of treatments for Alzheimer's disease during the past 30 years, considering the drugs, potential targets, late-stage clinical trials, development methods, emerging use of biomarkers and evolution of regulatory considerations in order to summarize advances and anticipate future developments. We have considered late-stage Alzheimer's disease drug development from 1984 to 2013, including individual clinical trials, systematic and qualitative reviews, meta-analyses, methods, commentaries, position papers and guidelines. We then review the evolution of drugs in late clinical development, methods, biomarkers and regulatory issues. Although a range of small molecules and biological products against many targets have been investigated in clinical trials, the predominant drug targets have been the cholinergic system and the amyloid cascade. Trial methods have evolved incrementally: inclusion criteria have largely remained focused on mild-to-moderate Alzheimer's disease criteria, recently extending to early or prodromal Alzheimer disease or 'mild cognitive impairment due to Alzheimer's disease', for drugs considered to be disease modifying. The duration of trials has remained at 6-12 months for drugs intended to improve symptoms; 18- to 24-month trials have been established for drugs expected to attenuate clinical course. Cognitive performance, activities of daily living, global change and severity ratings have persisted as the primary clinically relevant outcomes. Regulatory guidance and oversight have evolved to allow for enrichment of early-stage Alzheimer's disease trial samples using biomarkers and phase-specific outcomes. In conclusion, validated drug targets for Alzheimer's disease remain to be developed. Only drugs that affect an aspect of cholinergic function have shown consistent, but modest, clinical effects in late-phase trials. There is opportunity for substantial improvements in drug discovery and clinical development methods.

551 citations


Authors

Showing all 27203 results

NameH-indexPapersCitations
JoAnn E. Manson2701819258509
Joseph L. Goldstein207556149527
Kari Stefansson206794174819
David Baltimore203876162955
Mark I. McCarthy2001028187898
Michael S. Brown185422123723
Yang Gao1682047146301
Napoleone Ferrara167494140647
Marc Weber1672716153502
Alessandro Melchiorri151674116384
Andrew D. Hamilton1511334105439
David P. Strachan143472105256
Andrew Beretvas1411985110059
Rainer Wallny1411661105387
Josh Moss139101989255
Network Information
Related Institutions (5)
Max Planck Society
406.2K papers, 19.5M citations

93% related

University of Oxford
258.1K papers, 12.9M citations

93% related

University College London
210.6K papers, 9.8M citations

93% related

Centre national de la recherche scientifique
382.4K papers, 13.6M citations

93% related

Yale University
220.6K papers, 12.8M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023171
2022520
20214,280
20204,142
20193,581
20183,395