scispace - formally typeset
Search or ask a question
Institution

University of Geneva

EducationGeneva, Switzerland
About: University of Geneva is a education organization based out in Geneva, Switzerland. It is known for research contribution in the topics: Population & Galaxy. The organization has 26887 authors who have published 65265 publications receiving 2931373 citations. The organization is also known as: Geneva University & Universite de Geneve.


Papers
More filters
Journal ArticleDOI
TL;DR: The paper presents the architecture and functionality of the principal networking agent?the SECOQC node module, which enables the authentic classical communication required for key distillation, manages the generated key material, determines a communication path between any destinations in the network, and realizes end-to-end secure transport of key material between these destinations.
Abstract: In this paper, we present the quantum key distribution (QKD) network designed and implemented by the European project SEcure COmmunication based on Quantum Cryptography (SECOQC) (2004?2008), unifying the efforts of 41 research and industrial organizations. The paper summarizes the SECOQC approach to QKD networks with a focus on the trusted repeater paradigm. It discusses the architecture and functionality of the SECOQC trusted repeater prototype, which has been put into operation in Vienna in 2008 and publicly demonstrated in the framework of a SECOQC QKD conference held from October 8 to 10, 2008. The demonstration involved one-time pad encrypted telephone communication, a secure (AES encryption protected) video-conference with all deployed nodes and a number of rerouting experiments, highlighting basic mechanisms of the SECOQC network functionality.The paper gives an overview of the eight point-to-point network links in the prototype and their underlying technology: three plug and play systems by id Quantique, a one way weak pulse system from Toshiba Research in the UK, a coherent one-way system by GAP Optique with the participation of id Quantique and the AIT Austrian Institute of Technology (formerly ARC), an entangled photons system by the University of Vienna and the AIT, a continuous-variables system by Centre National de la Recherche Scientifique (CNRS) and THALES Research and Technology with the participation of Universit? Libre de Bruxelles, and a free space link by the Ludwig Maximillians University in Munich connecting two nodes situated in adjacent buildings (line of sight 80?m). The average link length is between 20 and 30?km, the longest link being 83?km.The paper presents the architecture and functionality of the principal networking agent?the SECOQC node module, which enables the authentic classical communication required for key distillation, manages the generated key material, determines a communication path between any destinations in the network, and realizes end-to-end secure transport of key material between these destinations.The paper also illustrates the operation of the network in a number of typical exploitation regimes and gives an initial estimate of the network transmission capacity, defined as the maximum amount of key that can be exchanged, or alternatively the amount of information that can be transmitted with information theoretic security, between two arbitrary nodes.

816 citations

Journal ArticleDOI
Lorenzo Galluzzi1, J M Bravo-San Pedro2, Ilio Vitale, Stuart A. Aaronson3, John M. Abrams4, Dieter Adam5, Emad S. Alnemri6, Lucia Altucci7, David W. Andrews8, Margherita Annicchiarico-Petruzzelli, Eric H. Baehrecke9, Nicolas G. Bazan10, Mathieu J.M. Bertrand11, Mathieu J.M. Bertrand12, Katiuscia Bianchi13, Katiuscia Bianchi14, Mikhail V. Blagosklonny15, Klas Blomgren16, Christoph Borner17, Dale E. Bredesen18, Dale E. Bredesen19, Catherine Brenner20, Catherine Brenner21, Michelangelo Campanella22, Eleonora Candi23, Francesco Cecconi23, Francis Ka-Ming Chan9, Navdeep S. Chandel24, Emily H. Cheng25, Jerry E. Chipuk3, John A. Cidlowski26, Aaron Ciechanover27, Ted M. Dawson28, Valina L. Dawson28, V De Laurenzi29, R De Maria, Klaus-Michael Debatin30, N. Di Daniele23, Vishva M. Dixit31, Brian David Dynlacht32, Wafik S. El-Deiry33, Gian Maria Fimia34, Richard A. Flavell35, Simone Fulda36, Carmen Garrido37, Marie-Lise Gougeon38, Douglas R. Green, Hinrich Gronemeyer39, György Hajnóczky6, J M Hardwick28, Michael O. Hengartner40, Hidenori Ichijo41, Bertrand Joseph16, Philipp J. Jost42, Thomas Kaufmann43, Oliver Kepp2, Daniel J. Klionsky44, Richard A. Knight45, Richard A. Knight22, Sharad Kumar46, Sharad Kumar47, John J. Lemasters48, Beth Levine49, Beth Levine50, Andreas Linkermann5, Stuart A. Lipton, Richard A. Lockshin51, Carlos López-Otín52, Enrico Lugli, Frank Madeo53, Walter Malorni54, Jean-Christophe Marine55, Seamus J. Martin56, J-C Martinou57, Jan Paul Medema58, Pascal Meier, Sonia Melino23, Noboru Mizushima41, Ute M. Moll59, Cristina Muñoz-Pinedo, Gabriel Núñez44, Andrew Oberst60, Theocharis Panaretakis16, Josef M. Penninger, Marcus E. Peter24, Mauro Piacentini23, Paolo Pinton61, Jochen H. M. Prehn62, Hamsa Puthalakath63, Gabriel A. Rabinovich64, Kodi S. Ravichandran65, Rosario Rizzuto66, Cecília M. P. Rodrigues67, David C. Rubinsztein68, Thomas Rudel69, Yufang Shi70, Hans-Uwe Simon43, Brent R. Stockwell49, Brent R. Stockwell71, Gyorgy Szabadkai22, Gyorgy Szabadkai66, Stephen W.G. Tait72, H. L. Tang28, Nektarios Tavernarakis73, Nektarios Tavernarakis74, Yoshihide Tsujimoto, T Vanden Berghe11, T Vanden Berghe12, Peter Vandenabeele12, Peter Vandenabeele11, Andreas Villunger75, Erwin F. Wagner76, Henning Walczak22, Eileen White77, W. G. Wood78, Junying Yuan79, Zahra Zakeri80, Boris Zhivotovsky81, Boris Zhivotovsky16, Gerry Melino45, Gerry Melino23, Guido Kroemer1 
Paris Descartes University1, Institut Gustave Roussy2, Mount Sinai Hospital3, University of Texas Southwestern Medical Center4, University of Kiel5, Thomas Jefferson University6, Seconda Università degli Studi di Napoli7, University of Toronto8, University of Massachusetts Medical School9, Louisiana State University10, Ghent University11, Flanders Institute for Biotechnology12, Queen Mary University of London13, Cancer Research UK14, Roswell Park Cancer Institute15, Karolinska Institutet16, University of Freiburg17, University of California, San Francisco18, Buck Institute for Research on Aging19, Université Paris-Saclay20, French Institute of Health and Medical Research21, University College London22, University of Rome Tor Vergata23, Northwestern University24, Memorial Sloan Kettering Cancer Center25, National Institutes of Health26, Technion – Israel Institute of Technology27, Johns Hopkins University28, University of Chieti-Pescara29, University of Ulm30, Genentech31, New York University32, Pennsylvania State University33, University of Salento34, Yale University35, Goethe University Frankfurt36, University of Burgundy37, Pasteur Institute38, University of Strasbourg39, University of Zurich40, University of Tokyo41, Technische Universität München42, University of Bern43, University of Michigan44, Medical Research Council45, University of South Australia46, University of Adelaide47, Medical University of South Carolina48, Howard Hughes Medical Institute49, University of Texas at Dallas50, St. John's University51, University of Oviedo52, University of Graz53, Istituto Superiore di Sanità54, Katholieke Universiteit Leuven55, Trinity College, Dublin56, University of Geneva57, University of Amsterdam58, Stony Brook University59, University of Washington60, University of Ferrara61, Royal College of Surgeons in Ireland62, La Trobe University63, University of Buenos Aires64, University of Virginia65, University of Padua66, University of Lisbon67, University of Cambridge68, University of Würzburg69, Soochow University (Suzhou)70, Columbia University71, University of Glasgow72, Foundation for Research & Technology – Hellas73, University of Crete74, Innsbruck Medical University75, Carlos III Health Institute76, Rutgers University77, University of Minnesota78, Harvard University79, City University of New York80, Moscow State University81
TL;DR: The Nomenclature Committee on Cell Death formulates a set of recommendations to help scientists and researchers to discriminate between essential and accessory aspects of cell death.
Abstract: Cells exposed to extreme physicochemical or mechanical stimuli die in an uncontrollable manner, as a result of their immediate structural breakdown. Such an unavoidable variant of cellular demise is generally referred to as ‘accidental cell death’ (ACD). In most settings, however, cell death is initiated by a genetically encoded apparatus, correlating with the fact that its course can be altered by pharmacologic or genetic interventions. ‘Regulated cell death’ (RCD) can occur as part of physiologic programs or can be activated once adaptive responses to perturbations of the extracellular or intracellular microenvironment fail. The biochemical phenomena that accompany RCD may be harnessed to classify it into a few subtypes, which often (but not always) exhibit stereotyped morphologic features. Nonetheless, efficiently inhibiting the processes that are commonly thought to cause RCD, such as the activation of executioner caspases in the course of apoptosis, does not exert true cytoprotective effects in the mammalian system, but simply alters the kinetics of cellular demise as it shifts its morphologic and biochemical correlates. Conversely, bona fide cytoprotection can be achieved by inhibiting the transduction of lethal signals in the early phases of the process, when adaptive responses are still operational. Thus, the mechanisms that truly execute RCD may be less understood, less inhibitable and perhaps more homogeneous than previously thought. Here, the Nomenclature Committee on Cell Death formulates a set of recommendations to help scientists and researchers to discriminate between essential and accessory aspects of cell death.

809 citations

Journal ArticleDOI
23 Jan 2004-Science
TL;DR: Not only can the necessary high-quality ferroelectric films now be grown for new device capabilities, but ferroelectrics can be combined with other functional oxides, such as high-temperature superconductors and magnetic oxide, to create multifunctional materials and devices.
Abstract: Ferroelectric oxide materials have offered a tantalizing potential for applications since the discovery of ferroelectric perovskites more than 50 years ago. Their switchable electric polarization is ideal for use in devices for memory storage and integrated microelectronics, but progress has long been hampered by difficulties in materials processing. Recent breakthroughs in the synthesis of complex oxides have brought the field to an entirely new level, in which complex artificial oxide structures can be realized with an atomic-level precision comparable to that well known for semiconductor heterostructures. Not only can the necessary high-quality ferroelectric films now be grown for new device capabilities, but ferroelectrics can be combined with other functional oxides, such as high-temperature superconductors and magnetic oxides, to create multifunctional materials and devices. Moreover, the shrinking of the relevant lengths to the nanoscale produces new physical phenomena. Real-space characterization and manipulation of the structure and properties at atomic scales involves new kinds of local probes and a key role for first-principles theory.

808 citations

Journal ArticleDOI
TL;DR: The interleukin‐1 (IL‐1), IL‐18, and IL‐33 families of cytokines are related by mechanism of origin, receptor structure, and signal transduction pathways utilized.
Abstract: The interleukin-1 (IL-1), IL-18, and IL-33 families of cytokines are related by mechanism of origin, receptor structure, and signal transduction pathways utilized. All three cytokines are synthesized as precursor molecules and cleaved by the enzyme caspase-1 before or during release from the cell. The NALP-3 inflammasome is of crucial importance in generating active caspase-1. The IL-1 family contains two agonists, IL-1alpha and IL-1beta, a specific inhibitor, IL-1 receptor antagonist (IL-1Ra), and two receptors, the biologically active type IL-1R and inactive type II IL-1R. Both IL-1RI and IL-33R utilize the same interacting accessory protein (IL-1RAcP). The balance between IL-1 and IL-1Ra is important in preventing disease in various organs, and excess production of IL-1 has been implicated in many human diseases. The IL-18 family also contains a specific inhibitor, the IL-18-binding protein (IL-18BP), which binds IL-18 in the fluid phase. The IL-18 receptor is similar to the IL-1 receptor complex, including a single ligand-binding chain and a different interacting accessory protein. IL-18 provides an important link between the innate and adaptive immune responses. Newly described IL-33 binds to the orphan IL-1 family receptor T1/ST2 and stimulates T-helper 2 responses as well as mast cells.

807 citations

Journal ArticleDOI
TL;DR: This is the first in vivo evidence of enhanced brain function and structure due to the NIDCAP, and demonstrates that quality of experience before term may influence brain development significantly.
Abstract: Objective. To investigate the effects of early experience on brain function and structure. Methods. A randomized clinical trial tested the neu- rodevelopmental effectiveness of the Newborn Individ- ualized Developmental Care and Assessment Program (NIDCAP). Thirty preterm infants, 28 to 33 weeks' ges- tational age (GA) at birth and free of known develop- mental risk factors, participated in the trial. NIDCAP was initiated within 72 hours of intensive care unit admission and continued to the age of 2 weeks, corrected for pre- maturity. Control (14) and experimental (16) infants were assessed at 2 weeks' and 9 months' corrected age on health status, growth, and neurobehavior, and at 2 weeks' corrected age additionally on electroencephalogram spec- tral coherence, magnetic resonance diffusion tensor im- aging, and measurements of transverse relaxation time. Results. The groups were medically and demograph- ically comparable before as well as after the treatment. However, the experimental group showed significantly better neurobehavioral functioning, increased coherence between frontal and a broad spectrum of mainly occipital brain regions, and higher relative anisotropy in left in- ternal capsule, with a trend for right internal capsule and frontal white matter. Transverse relaxation time showed no difference. Behavioral function was improved also at 9 months' corrected age. The relationship among the 3 neurodevelopmental domains was significant. The re- sults indicated consistently better function and more ma- ture fiber structure for experimental infants compared with their controls. Conclusions. This is the first in vivo evidence of en- hanced brain function and structure due to the NIDCAP. The study demonstrates that quality of experience before term may influence brain development significantly. Pe- diatrics 2004;113:846 - 857; preterm infants, NIDCAP, neu- robehavior, spectral coherence, diffusion tensor imaging, transverse relaxation time, Bayley Scales of Infant Devel- opment, APIB.

807 citations


Authors

Showing all 27203 results

NameH-indexPapersCitations
JoAnn E. Manson2701819258509
Joseph L. Goldstein207556149527
Kari Stefansson206794174819
David Baltimore203876162955
Mark I. McCarthy2001028187898
Michael S. Brown185422123723
Yang Gao1682047146301
Napoleone Ferrara167494140647
Marc Weber1672716153502
Alessandro Melchiorri151674116384
Andrew D. Hamilton1511334105439
David P. Strachan143472105256
Andrew Beretvas1411985110059
Rainer Wallny1411661105387
Josh Moss139101989255
Network Information
Related Institutions (5)
Max Planck Society
406.2K papers, 19.5M citations

93% related

University of Oxford
258.1K papers, 12.9M citations

93% related

University College London
210.6K papers, 9.8M citations

93% related

Centre national de la recherche scientifique
382.4K papers, 13.6M citations

93% related

Yale University
220.6K papers, 12.8M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023171
2022520
20214,280
20204,142
20193,581
20183,395