scispace - formally typeset
Search or ask a question
Institution

University of Grenoble

EducationSaint-Martin-d'Hères, France
About: University of Grenoble is a education organization based out in Saint-Martin-d'Hères, France. It is known for research contribution in the topics: Population & Context (language use). The organization has 25658 authors who have published 45143 publications receiving 909760 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors test the hypothesis that these dust rings are caused by dust trapping in radial pressure bumps, and if confirmed, put constraints on the physics of the dust trapping mechanism.
Abstract: A large fraction of the protoplanetary disks observed with ALMA display multiple well-defined and nearly perfectly circular rings in the continuum, in many cases with substantial peak-to-valley contrast. The DSHARP campaign shows that several of these rings are very narrow in radial extent. In this Letter we test the hypothesis that these dust rings are caused by dust trapping in radial pressure bumps, and if confirmed, put constraints on the physics of the dust trapping mechanism. We model this process analytically in 1D, assuming axisymmetry. By comparing this model to the data, we find that all rings are consistent with dust trapping. Based on a plausible model of the dust temperature we find that several rings are narrower than the pressure scale height, providing strong evidence for dust trapping. The rings have peak absorption optical depth in the range between 0.2 and 0.5. The dust masses stored in each of these rings is of the order of tens of Earth masses, though much ambiguity remains due to the uncertainty of the dust opacities. The dust rings are dense enough to potentially trigger the streaming instability, but our analysis cannot give proof of this mechanism actually operating. Our results show, however, that the combination of very low alpha(turb) > 0.1 cm grain can be excluded by the data for all the rings studied in this Letter.

270 citations

Journal ArticleDOI
V. A. Acciari1, E. Aliu2, T. C. Arlen3, Manuel A. Bautista4  +382 moreInstitutions (62)
24 Jul 2009-Science
TL;DR: Radio and VHE observations of the radio galaxy Messier 87 are revealed, revealing a period of extremely strong VHE gamma-ray flares accompanied by a strong increase of theRadio flux from its nucleus, implying that charged particles are accelerated to very high energies in the immediate vicinity of the black hole.
Abstract: The accretion of matter onto a massive black hole is believed to feed the relativistic plasma jets found in many active galactic nuclei (AGN). Although some AGN accelerate particles to energies exceeding 10(12) electron volts and are bright sources of very-high-energy (VHE) gamma-ray emission, it is not yet known where the VHE emission originates. Here we report on radio and VHE observations of the radio galaxy Messier 87, revealing a period of extremely strong VHE gamma-ray flares accompanied by a strong increase of the radio flux from its nucleus. These results imply that charged particles are accelerated to very high energies in the immediate vicinity of the black hole.

269 citations

Journal ArticleDOI
TL;DR: A new method for bidimensional empirical mode decomposition (EMD) based on Delaunay triangulation and on piecewise cubic polynomial interpolation is described, which shows its efficiency in terms of computational cost and the decomposition of Gaussian white noises leads to bidimensional selective filter banks.
Abstract: In this letter, we describe a new method for bidimensional empirical mode decomposition (EMD). This decomposition is based on Delaunay triangulation and on piecewise cubic polynomial interpolation. Particular attention is devoted to boundary conditions that are crucial for the feasibility of the bidimensional EMD. The study of the behavior of the decomposition on a different kind of image shows its efficiency in terms of computational cost, and the decomposition of Gaussian white noises leads to bidimensional selective filter banks.

269 citations

Journal ArticleDOI
TL;DR: In this paper, a novel spectral mixture model, called the augmented linear mixing model (ARMLM), is proposed to address spectral variability by applying a data-driven learning strategy in inverse problems of hyperspectral unmixing.
Abstract: Hyperspectral imagery collected from airborne or satellite sources inevitably suffers from spectral variability, making it difficult for spectral unmixing to accurately estimate abundance maps. The classical unmixing model, the linear mixing model (LMM), generally fails to handle this sticky issue effectively. To this end, we propose a novel spectral mixture model, called the augmented LMM, to address spectral variability by applying a data-driven learning strategy in inverse problems of hyperspectral unmixing. The proposed approach models the main spectral variability (i.e., scaling factors) generated by variations in illumination or typography separately by means of the endmember dictionary. It then models other spectral variabilities caused by environmental conditions (e.g., local temperature and humidity and atmospheric effects) and instrumental configurations (e.g., sensor noise), and material nonlinear mixing effects, by introducing a spectral variability dictionary. To effectively run the data-driven learning strategy, we also propose a reasonable prior knowledge for the spectral variability dictionary, whose atoms are assumed to be low-coherent with spectral signatures of endmembers, which leads to a well-known low-coherence dictionary learning problem. Thus, a dictionary learning technique is embedded in the framework of spectral unmixing so that the algorithm can learn the spectral variability dictionary and estimate the abundance maps simultaneously. Extensive experiments on synthetic and real datasets are performed to demonstrate the superiority and effectiveness of the proposed method in comparison with the previous state-of-the-art methods.

269 citations

Book ChapterDOI
01 Jan 1987
TL;DR: In this paper, the authors propose an implementation model that attempts to bridge the gap between the abstract sphere of theoretical models and the practical affairs of building user interfaces, recursively structures an interactive application in three parts: the Presentation, the Abstraction and the Control.
Abstract: PAC is an implementation model that attempts to bridge the gap between the abstract sphere of theoretical models and the practical affairs of building user interfaces. It takes as a basis the vertical decomposition of human-computer interaction into semantic, syntactic and pragmatic layers as promoted by some theoretical models. However, PAC stresses the fact that these notions do not form strict monolithic layers but are distributed across related “chunks”, called interactive objects. For doing so, PAC recursively structures an interactive application in three parts: the Presentation, the Abstraction and the Control. The Presentation defines the the concrete syntax of the application whereas the Abstraction corresponds to the semantics. The Control maintains the mapping and the consistency between the abstract entities and their presentation to the user. The Presentation of an application is in turn decomposed into a set of interactive objects, entities specialized in man-machine communication. As for applications, an interactive object is organized according to the PAC model. PAC has been used for the construction of two interactive applications and is currently applied to the development of a User Interface Management System.

268 citations


Authors

Showing all 25961 results

NameH-indexPapersCitations
Dieter Lutz13967167414
Marcella Bona137139192162
Nicolas Berger137158196529
Cordelia Schmid135464103925
J. F. Macías-Pérez13448694715
Marina Cobal132107885437
Lydia Roos132128489435
Tetiana Hryn'ova131105984260
Johann Collot131101882865
Remi Lafaye131101283281
Jan Stark131118687025
Sabine Crépé-Renaudin129114282741
Isabelle Wingerter-Seez12993079689
James Alexander12988675096
Jessica Levêque129100670208
Network Information
Related Institutions (5)
University of Paris
174.1K papers, 5M citations

96% related

Centre national de la recherche scientifique
382.4K papers, 13.6M citations

93% related

ETH Zurich
122.4K papers, 5.1M citations

92% related

Imperial College London
209.1K papers, 9.3M citations

91% related

École Polytechnique Fédérale de Lausanne
98.2K papers, 4.3M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023166
2022698
20215,127
20205,328
20195,192
20184,999