scispace - formally typeset
Search or ask a question
Institution

University of Grenoble

EducationSaint-Martin-d'Hères, France
About: University of Grenoble is a education organization based out in Saint-Martin-d'Hères, France. It is known for research contribution in the topics: Population & Context (language use). The organization has 25658 authors who have published 45143 publications receiving 909760 citations.


Papers
More filters
Journal ArticleDOI
Daniel Abercrombie1, Nural Akchurin2, Ece Akilli3, Juan Alcaraz Maestre, Brandon Allen1, Barbara Alvarez Gonzalez4, Jeremy Andrea5, Alexandre Arbey4, Alexandre Arbey6, Georges Azuelos7, Patrizia Azzi, Mihailo Backović8, Yang Bai9, Swagato Banerjee9, James Beacham10, Alexander Belyaev11, Antonio Boveia10, Amelia Jean Brennan12, Oliver Buchmueller13, Matthew R. Buckley14, Giorgio Busoni, Michael Buttignol5, Giacomo Cacciapaglia15, Regina Caputo16, Linda M. Carpenter10, Nuno Filipe Castro17, G. Gomez Ceballos1, Yangyang Cheng18, John Paul Chou14, A. González, C. Cowden2, Francesco D'Eramo19, Annapaola De Cosa20, Michele De Gruttola4, Albert De Roeck4, Andrea De Simone, Aldo Deandrea15, Zeynep Demiragli1, Anthony DiFranzo21, Caterina Doglioni22, Tristan Du Pree4, Robin Erbacher23, Johannes Erdmann, Cora Fischer, Henning Flaecher24, Patrick J. Fox25, Benjamin Fuks5, Marie-Hélène Genest26, Bhawna Gomber9, Andreas Goudelis27, Johanna Gramling3, John F. Gunion23, Kristian Hahn28, Ulrich Haisch29, Roni Harnik25, Philip Harris4, Kerstin Hoepfner30, Siew Yan Hoh31, Dylan Hsu1, Shih-Chieh Hsu32, Yutaro Iiyama1, Valerio Ippolito33, Thomas Jacques3, Xiangyang Ju9, Felix Kahlhoefer, Alexis Kalogeropoulos, Laser Seymour Kaplan9, Lashkar Kashif9, Valentin V. Khoze34, Raman Khurana35, Khristian Kotov10, Dmytro Kovalskyi1, Suchita Kulkarni27, Shuichi Kunori2, Viktor Kutzner30, Hyun Min Lee36, S.W. Lee2, Seng Pei Liew37, Tongyan Lin18, Steven Lowette38, Romain Madar39, Sudhir Malik13, Fabio Maltoni8, Mario Martinez Perez, Olivier Mattelaer34, Kentarou Mawatari38, Christopher McCabe40, Theo Jean Megy39, Enrico Morgante3, Stephen Mrenna25, Chang Seong Moon41, Siddharth Narayanan1, Andrew Nelson21, Sergio F Novaes41, Klaas Padeken30, Priscilla Pani42, Michele Papucci43, Manfred Paulini44, Christoph Paus1, Jacopo Pazzini45, Bjoern Penning13, Michael E. Peskin46, Deborah Pinna20, Massimiliano Procura47, S. Qazi48, Davide Racco3, Emanuele Re29, Antonio Riotto3, T.G. Rizzo46, Rainer Roehrig49, David Salek, Arturo Rodolfo Sanchez Pineda50, Subir Sarkar29, Subir Sarkar51, Alexander Schmidt52, Steven Schramm3, William Shepherd16, William Shepherd51, Gurpreet Singh53, Livia Soffi54, Norraphat Srimanobhas53, Kevin Sung28, Tim M. P. Tait21, Timothée Theveneaux-Pelzer39, Marc Thomas11, Mia Tosi45, Daniele Trocino55, Sonaina Undleeb2, Alessandro Vichi4, Fuqiang Wang9, Lian-Tao Wang18, Ren Jie Wang55, Nikola Lazar Whallon32, Steven Worm56, Mengqing Wu26, Sau Lan Wu9, Haijun Yang9, Yang Yang20, Shin Shan Yu35, Bryan Zaldivar57, Marco Zanetti45, Zhiqing Zhang58, Alberto Zucchetta45 
Massachusetts Institute of Technology1, Texas Tech University2, University of Geneva3, CERN4, University of Strasbourg5, École normale supérieure de Lyon6, Université de Montréal7, Université catholique de Louvain8, University of Wisconsin-Madison9, Ohio State University10, University of Southampton11, University of Melbourne12, Imperial College London13, Rutgers University14, Claude Bernard University Lyon 115, University of California, Santa Cruz16, University of Porto17, University of Chicago18, University of California, Berkeley19, University of Zurich20, University of California, Irvine21, Lund University22, University of California, Davis23, University of Bristol24, Fermilab25, University of Grenoble26, Austrian Academy of Sciences27, Northwestern University28, University of Oxford29, RWTH Aachen University30, University of Malaya31, University of Washington32, Harvard University33, Durham University34, National Central University35, Chung-Ang University36, University of Tokyo37, Vrije Universiteit Brussel38, University of Auvergne39, University of Amsterdam40, Sao Paulo State University41, Stockholm University42, Lawrence Berkeley National Laboratory43, Carnegie Mellon University44, University of Padua45, SLAC National Accelerator Laboratory46, University of Vienna47, Quaid-i-Azam University48, Max Planck Society49, University of Naples Federico II50, University of Copenhagen51, University of Hamburg52, Chulalongkorn University53, Cornell University54, Northeastern University55, Rutherford Appleton Laboratory56, Université libre de Bruxelles57, Centre national de la recherche scientifique58
TL;DR: The final report of the ATLAS-CMS Dark Matter Forum, a forum organized by ATLAS and CMS collaborations with the participation of experts on theories of dark matter, to select a minimal basis set of simplified models that should support the design of the early LHC Run-2 searches is presented in this paper.

198 citations

Journal ArticleDOI
TL;DR: The results reveal an additional facet of the centrosome as an intracellular organizer and provide mechanistic insights into how the centre can function as an actin-filament-organizing centre.
Abstract: Microtubules and actin filaments are the two main cytoskeleton networks supporting intracellular architecture and cell polarity. The centrosome nucleates and anchors microtubules and is therefore considered to be the main microtubule-organizing centre. However, recurring, yet unexplained, observations have pointed towards a connection between the centrosome and actin filaments. Here we have used isolated centrosomes to demonstrate that the centrosome can directly promote actin-filament assembly. A cloud of centrosome-associated actin filaments could be identified in living cells as well. Actin-filament nucleation at the centrosome was mediated by the nucleation-promoting factor WASH in combination with the Arp2/3 complex. Pericentriolar material 1 (PCM1) seemed to modulate the centrosomal actin network by regulating Arp2/3 complex and WASH recruitment to the centrosome. Hence, our results reveal an additional facet of the centrosome as an intracellular organizer and provide mechanistic insights into how the centrosome can function as an actin-filament-organizing centre.

198 citations

Proceedings ArticleDOI
01 Jan 2019
TL;DR: It is found that it is trivial for an adversary to manipulate the composition of these lists, and the first to empirically validate that the ranks of domains in each of the lists are easily altered through as little as a single HTTP request.
Abstract: In order to evaluate the prevalence of security and privacy practices on a representative sample of the Web, researchers rely on website popularity rankings such as the Alexa list. While the validity and representativeness of these rankings are rarely questioned, our findings show the contrary: we show for four main rankings how their inherent properties (similarity, stability, representativeness, responsiveness and benignness) affect their composition and therefore potentially skew the conclusions made in studies. Moreover, we find that it is trivial for an adversary to manipulate the composition of these lists. We are the first to empirically validate that the ranks of domains in each of the lists are easily altered, in the case of Alexa through as little as a single HTTP request. This allows adversaries to manipulate rankings on a large scale and insert malicious domains into whitelists or bend the outcome of research studies to their will. To overcome the limitations of such rankings, we propose improvements to reduce the fluctuations in list composition and guarantee better defenses against manipulation. To allow the research community to work with reliable and reproducible rankings, we provide TRANCO, an improved ranking that we offer through an online service available at https://tranco-list.eu.

197 citations

Journal ArticleDOI
28 Nov 2016-Nature
TL;DR: All of the characteristics of the square-ice model are observed in an artificialsquare-ice system that consists of two sublattices of nanomagnets that are vertically separated by a small distance, and provides a protocol that could be used to investigate collective magnetic phenomena, including Coulomb phases and the physics of ice-like materials.
Abstract: Artificial spin-ice systems are lithographically patterned arrangements of interacting magnetic nanostructures that were introduced as way of investigating the effects of geometric frustration in a controlled manner. This approach has enabled unconventional states of matter to be visualized directly in real space, and has triggered research at the frontier between nanomagnetism, statistical thermodynamics and condensed matter physics. Despite efforts to create an artificial realization of the square-ice model-a two-dimensional geometrically frustrated spin-ice system defined on a square lattice-no simple geometry based on arrays of nanomagnets has successfully captured the macroscopically degenerate ground-state manifold of the model. Instead, square lattices of nanomagnets are characterized by a magnetically ordered ground state that consists of local loop configurations with alternating chirality. Here we show that all of the characteristics of the square-ice model are observed in an artificial square-ice system that consists of two sublattices of nanomagnets that are vertically separated by a small distance. The spin configurations we image after demagnetizing our arrays reveal unambiguous signatures of a Coulomb phase and algebraic spin-spin correlations, which are characterized by the presence of 'pinch' points in the associated magnetic structure factor. Local excitations-the classical analogues of magnetic monopoles-are free to evolve in an extensively degenerate, divergence-free vacuum. We thus provide a protocol that could be used to investigate collective magnetic phenomena, including Coulomb phases and the physics of ice-like materials.

197 citations

13 Dec 2018
TL;DR: In this article, the authors present observations of changes in ice flow for all glaciers in High Mountain Asia over the period 2000-2017, based on one million pairs of optical satellite images.
Abstract: Glaciers in High Mountain Asia have experienced heterogeneous rates of loss since the 1970s. Yet, the associated changes in ice flow that lead to mass redistribution and modify the glacier sensitivity to climate are poorly constrained. Here we present observations of changes in ice flow for all glaciers in High Mountain Asia over the period 2000–2017, based on one million pairs of optical satellite images. Trend analysis reveals that in 9 of the 11 surveyed regions, glaciers show sustained slowdown concomitant with ice thinning. In contrast, the stable or thickening glaciers of the Karakoram and West Kunlun regions experience slightly accelerated glacier flow. Up to 94% of the variability in velocity change between regions can be explained by changes in gravitational driving stress, which in turn is largely controlled by changes in ice thickness. We conclude that, despite the complexities of individual glacier behaviour, decadal and regional changes in ice flow are largely insensitive to changes in conditions at the bed of the glacier and can be well estimated from ice thickness change and slope alone. Changes in glacier speed in High Mountain Asia are closely linked to mass balance through gravitational driving stress, and largely insensitive to basal conditions, according to satellite-derived ice-flow observations.

197 citations


Authors

Showing all 25961 results

NameH-indexPapersCitations
Dieter Lutz13967167414
Marcella Bona137139192162
Nicolas Berger137158196529
Cordelia Schmid135464103925
J. F. Macías-Pérez13448694715
Marina Cobal132107885437
Lydia Roos132128489435
Tetiana Hryn'ova131105984260
Johann Collot131101882865
Remi Lafaye131101283281
Jan Stark131118687025
Sabine Crépé-Renaudin129114282741
Isabelle Wingerter-Seez12993079689
James Alexander12988675096
Jessica Levêque129100670208
Network Information
Related Institutions (5)
University of Paris
174.1K papers, 5M citations

96% related

Centre national de la recherche scientifique
382.4K papers, 13.6M citations

93% related

ETH Zurich
122.4K papers, 5.1M citations

92% related

Imperial College London
209.1K papers, 9.3M citations

91% related

École Polytechnique Fédérale de Lausanne
98.2K papers, 4.3M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023166
2022698
20215,127
20205,328
20195,192
20184,999