scispace - formally typeset
Search or ask a question
Institution

University of Wollongong

EducationWollongong, New South Wales, Australia
About: University of Wollongong is a education organization based out in Wollongong, New South Wales, Australia. It is known for research contribution in the topics: Population & Context (language use). The organization has 15674 authors who have published 46658 publications receiving 1197471 citations. The organization is also known as: UOW & Wollongong University.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors compared China and India using the bounds testing approach to cointegration and the ARDL methodology to test the long and short-run relationships between growth, trade, energy use and endogenously determined structural breaks.

509 citations

Journal ArticleDOI
TL;DR: In this paper, a series of nitrogen-containing polymer and carbon spheres were obtained by the sol-gel method by one-pot hydrothermal synthesis in the presence of resorcinol/formaldehyde as carbon precursors and ethylenediamine (EDA) as both a base catalyst and nitrogen precursor, followed by carbonization in nitrogen and activation with CO2.
Abstract: A series of nitrogen-containing polymer and carbon spheres were obtained by the sol–gel method. In particular, the nitrogen-rich carbon spheres were prepared by one-pot hydrothermal synthesis in the presence of resorcinol/formaldehyde as carbon precursors and ethylenediamine (EDA) as both a base catalyst and nitrogen precursor, followed by carbonization in nitrogen and activation with CO2. The introduction of EDA to the sol–gel system resulted in structurally bonded nitrogen-containing carbon spheres. The nitrogen doping level and the particle size can be tuned by varying the EDA amount in the reaction mixture. The maximum nitrogen doping level of 7.2 wt % in carbon spheres could be achieved without sacrificing the spherical morphology. The diameter of these carbon spheres (CS) can be tuned in the rage of 50–1200 nm by varying the EDA amount. N2 adsorption analysis showed that the aforementioned activated carbon spheres exhibited high surface area reaching up to1224 m2/g. Ultra high CO2 adsorption capacit...

508 citations

Journal ArticleDOI
05 Dec 2014-Science
TL;DR: Results reveal that recruited neutrophils scan for activated platelets, and they suggest that the neutrophil’ bipolarity allows the integration of signals present at both the endothelium and the circulation before inflammation proceeds, which alleviated collateral inflammatory damage to tissues in several injury models in mice.
Abstract: Immune and inflammatory responses require leukocytes to migrate within and through the vasculature, a process that is facilitated by their capacity to switch to a polarized morphology with an asymmetric distribution of receptors. We report that neutrophil polarization within activated venules served to organize a protruding domain that engaged activated platelets present in the bloodstream. The selectin ligand PSGL-1 transduced signals emanating from these interactions, resulting in the redistribution of receptors that drive neutrophil migration. Consequently, neutrophils unable to polarize or to transduce signals through PSGL-1 displayed aberrant crawling, and blockade of this domain protected mice against thromboinflammatory injury. These results reveal that recruited neutrophils scan for activated platelets, and they suggest that the neutrophils' bipolarity allows the integration of signals present at both the endothelium and the circulation before inflammation proceeds.

506 citations

Journal ArticleDOI
TL;DR: Recent advances regarding the identification of active sites for the CO2 RR and the pathway of reduction of CO2 to the final product are comprehensively reviewed and some perspectives on the development of heteroatom-doped carbon materials as metal-free electrocatalysts for theCO2 RR are included.
Abstract: The rapid increase of the CO2 concentration in the Earth's atmosphere has resulted in numerous environmental issues, such as global warming, ocean acidification, melting of the polar ice, rising sea level, and extinction of species. To search for suitable and capable catalytic systems for CO2 conversion, electrochemical reduction of CO2 (CO2 RR) holds great promise. Emerging heterogeneous carbon materials have been considered as promising metal-free electrocatalysts for the CO2 RR, owing to their abundant natural resources, tailorable porous structures, resistance to acids and bases, high-temperature stability, and environmental friendliness. They exhibit remarkable CO2 RR properties, including catalytic activity, long durability, and high selectivity. Here, various carbon materials (e.g., carbon fibers, carbon nanotubes, graphene, diamond, nanoporous carbon, and graphene dots) with heteroatom doping (e.g., N, S, and B) that can be used as metal-free catalysts for the CO2 RR are highlighted. Recent advances regarding the identification of active sites for the CO2 RR and the pathway of reduction of CO2 to the final product are comprehensively reviewed. Additionally, the emerging challenges and some perspectives on the development of heteroatom-doped carbon materials as metal-free electrocatalysts for the CO2 RR are included.

506 citations

Journal ArticleDOI
TL;DR: In this article, two-dimensional (2D) MOF nanosheets decorated with Fe-MOF nanoparticles are synthesized and evaluated as the catalysts for water oxidation catalysis in alkaline medium.
Abstract: Metal-organic frameworks (MOFs) and MOF-derived nanostructures have recently been emerging as promising catalysts for electrocatalysis applications. Herein, twodimensional (2D) MOFs nanosheets decorated with Fe-MOF nanoparticles are synthesized and evaluated as the catalysts for water oxidation catalysis in alkaline medium. A dramatic enhancement of the catalytic activity is demonstrated by introduction of electrochemically inert Fe-MOF nanoparticles onto active 2D MOFs nanosheets. In the case of active Ni-MOF nanosheets (Ni-MOF@Fe-MOF), the overpotential is 265 mV to reach a current density of 10 mA cm in 1 M KOH, which is lowered by ca. 100 mV after hybridization due to the 2D nanosheet morphology and the synergistic effect between Ni active centers and Fe species. Similar performance improvement is also successfully demonstrated in active NiCo-MOF nanosheets. More importantly, the real catalytic active species in the hybrid Ni-MOF@FeMOF catalyst are unraveled. We find that, NiO nanograins (~5 nm) are formed in situ during OER process and act as OER active centers as well as building blocks of the porous nanosheet catalysts. These findings provide new insights into understanding MOF-based catalysts for

504 citations


Authors

Showing all 15918 results

NameH-indexPapersCitations
Lei Jiang1702244135205
Menachem Elimelech15754795285
Yoshio Bando147123480883
Paul Mitchell146137895659
Jun Chen136185677368
Zhen Li127171271351
Neville Owen12770074166
Chao Zhang127311984711
Jay Belsky12444155582
Shi Xue Dou122202874031
Keith A. Johnson12079851034
William R. Forman12080053717
Yang Li117131963111
Yusuke Yamauchi117100051685
Guoxiu Wang11765446145
Network Information
Related Institutions (5)
University of New South Wales
153.6K papers, 4.8M citations

96% related

University of Queensland
155.7K papers, 5.7M citations

95% related

University of Sydney
187.3K papers, 6.1M citations

93% related

Australian National University
109.2K papers, 4.3M citations

93% related

University of Melbourne
174.8K papers, 6.3M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20241
202388
2022483
20212,897
20203,018
20192,784