scispace - formally typeset
Search or ask a question

Showing papers in "Alzheimer's Research & Therapy in 2017"


Journal ArticleDOI
TL;DR: The growing body of research on the risk factors for AD and its preclinical stage is favouring the development of AD prevention programmes that, by delaying the onset of Alzheimer’s dementia for only a few years, would have a huge impact on public health.
Abstract: Due to the progressive aging of the population, Alzheimer’s disease (AD) is becoming a healthcare burden of epidemic proportions for which there is currently no cure. Disappointing results from clinical trials performed in mild–moderate AD dementia combined with clear epidemiological evidence on AD risk factors are contributing to the development of primary prevention initiatives. In addition, the characterization of the long asymptomatic stage of AD is allowing the development of intervention studies and secondary prevention programmes on asymptomatic at-risk individuals, before substantial irreversible neuronal dysfunction and loss have occurred, an approach that emerges as highly relevant. In this manuscript, we review current strategies for AD prevention, from primary prevention strategies based on identifying risk factors and risk reduction, to secondary prevention initiatives based on the early detection of the pathophysiological hallmarks and intervention at the preclinical stage of the disease. Firstly, we summarize the evidence on several AD risk factors, which are the rationale for the establishment of primary prevention programmes as well as revising current primary prevention strategies. Secondly, we review the development of public–private partnerships for disease prevention that aim to characterize the AD continuum as well as serving as platforms for secondary prevention trials. Finally, we summarize currently ongoing clinical trials recruiting participants with preclinical AD or a higher risk for the onset of AD-related cognitive impairment. The growing body of research on the risk factors for AD and its preclinical stage is favouring the development of AD prevention programmes that, by delaying the onset of Alzheimer’s dementia for only a few years, would have a huge impact on public health.

367 citations


Journal ArticleDOI
TL;DR: The study was stopped early for futility, but dose-dependent effects observed in exploratory analyses on select clinical and biomarker endpoints suggest that higher dosing with gantenerumab may be necessary to achieve clinical efficacy.
Abstract: Gantenerumab is a fully human monoclonal antibody that binds aggregated amyloid-β (Aβ) and removes Aβ plaques by Fc receptor-mediated phagocytosis. In the SCarlet RoAD trial, we assessed the efficacy and safety of gantenerumab in prodromal Alzheimer’s disease (AD). In this randomized, double-blind, placebo-controlled phase III study, we investigated gantenerumab over 2 years. Patients were randomized to gantenerumab 105 mg or 225 mg or placebo every 4 weeks by subcutaneous injection. The primary endpoint was the change from baseline to week 104 in Clinical Dementia Rating Sum of Boxes (CDR-SB) score. We evaluated treatment effects on cerebrospinal fluid biomarkers (all patients) and amyloid positron emission tomography (substudy). A futility analysis was performed once 50% of patients completed 2 years of treatment. Safety was assessed in patients who received at least one dose. Of the 3089 patients screened, 797 were randomized. The study was halted early for futility; dosing was discontinued; and the study was unblinded. No differences between groups in the primary (least squares mean [95% CI] CDR-SB change from baseline 1.60 [1.28, 1.91], 1.69 [1.37, 2.01], and 1.73 [1.42, 2.04] for placebo, gantenerumab 105 mg, and gantenerumab 225 mg, respectively) or secondary clinical endpoints were observed. The incidence of generally asymptomatic amyloid-related imaging abnormalities increased in a dose- and APOE e4 genotype-dependent manner. Exploratory analyses suggested a dose-dependent drug effect on clinical and biomarker endpoints. The study was stopped early for futility, but dose-dependent effects observed in exploratory analyses on select clinical and biomarker endpoints suggest that higher dosing with gantenerumab may be necessary to achieve clinical efficacy. ClinicalTrials.gov, NCT01224106 . Registered on October 14, 2010.

348 citations


Journal ArticleDOI
TL;DR: The concept of a disease continuum from pathophysiological, biomarker, and clinical perspectives is discussed, and the importance of considering AD as a continuum rather than discrete stages is highlighted.
Abstract: Basic research advances in recent years have furthered our understanding of the natural history of Alzheimer's disease (AD). It is now recognized that pathophysiological changes begin many years prior to clinical manifestations of disease and the spectrum of AD spans from clinically asymptomatic to severely impaired. Defining AD purely by its clinical presentation is thus artificial and efforts have been made to recognize the disease based on both clinical and biomarker findings. Advances with biomarkers have also prompted a shift in how the disease is considered as a clinico-pathophysiological entity, with an increasing appreciation that AD should not only be viewed with discrete and defined clinical stages, but as a multifaceted process moving along a seamless continuum. Acknowledging this concept is critical to understanding the development process for disease-modifying therapies, and for initiating effective diagnostic and disease management options. In this article, we discuss the concept of a disease continuum from pathophysiological, biomarker, and clinical perspectives, and highlight the importance of considering AD as a continuum rather than discrete stages. While the pathophysiology of AD has still not been elucidated completely, there is ample evidence to support researchers and clinicians embracing the view of a disease continuum in their study, diagnosis, and management of the disease.

281 citations


Journal ArticleDOI
TL;DR: The results indicate that the interpretation of 18F-THK5351 PET images, with respect to tau, is confounded by the high MAO-B availability across the entire brain.
Abstract: 18F-THK5351 is a quinoline-derived tau imaging agent with high affinity to paired helical filaments (PHF). However, high levels of 18F-THK5351 retention in brain regions thought to contain negligible concentrations of PHF raise questions about the interpretation of the positron emission tomography (PET) signals, particularly given previously described interactions between quinolone derivatives and monoamine oxidase B (MAO-B). Here, we tested the effects of MAO-B inhibition on 18F-THK5351 brain uptake using PET and autoradiography. Eight participants (five mild cognitive impairment, two Alzheimer’s disease, and one progressive supranuclear palsy) had baseline 18F-AZD4694 and 18F-THK5351 scans in order to quantify brain amyloid and PHF load, respectively. A second 18F-THK5351 scan was conducted 1 week later, 1 h after a 10-mg oral dose of selegiline. Three out of eight patients also had a third 18F-THK5351 scan 9–28 days after the selegiline administration. The primary outcome measure was standardized uptake value (SUV), calculated using tissue radioactivity concentration from 50 to 70 min after 18F-THK5351 injection, normalizing for body weight and injected radioactivity. The SUV ratio (SUVR) was determined using the cerebellar cortex as the reference region. 18F-THK5351 competition autoradiography studies in postmortem tissue were conducted using 150 and 500 nM selegiline. At baseline, 18F-THK5351 SUVs were highest in the basal ganglia (0.64 ± 0.11) and thalamus (0.62 ± 0.14). In the post-selegiline scans, the regional SUVs were reduced on average by 36.7% to 51.8%, with the greatest reduction noted in the thalamus (51.8%) and basal ganglia (51.4%). MAO-B inhibition also reduced 18F-THK5351 SUVs in the cerebellar cortex (41.6%). The SUVs remained reduced in the three patients imaged at 9–28 days. Tissue autoradiography confirmed the effects of MAO-B inhibition on 18F-THK5351 uptake. These results indicate that the interpretation of 18F-THK5351 PET images, with respect to tau, is confounded by the high MAO-B availability across the entire brain. In addition, the heterogeneous MAO-B availability across the cortex may limit the interpretation of 18F-THK5351 scans using reference region methods.

275 citations


Journal ArticleDOI
TL;DR: A review of the impact of typical infectious challenges and changes known to occur with age in the peripheral immune system, which may contribute to the age-related vulnerability to infection-induced cognitive decline in patients with dementia.
Abstract: Previously, the contribution of peripheral infection to cognitive decline was largely overlooked however, the past 15 years have established a key role for infectious pathogens in the progression of age-related neurodegeneration. It is now accepted that the immune privilege of the brain is not absolute, and that cells of the central nervous system are sensitive to both the inflammatory events occurring in the periphery and to the infiltration of peripheral immune cells. This is particularly relevant for the progression of Alzheimer’s disease, in which it has been demonstrated that patients are more vulnerable to infection-related cognitive changes. This can occur from typical infectious challenges such as respiratory tract infections, although a number of specific viral, bacterial, and fungal pathogens have also been associated with the development of the disease. To date, it is not clear whether these microorganisms are directly related to Alzheimer’s disease progression or if they are opportune pathogens that easily colonize those with dementia and exacerbate the ongoing inflammation observed in these individuals. This review will discuss the impact of each of these challenges, and examine the changes known to occur with age in the peripheral immune system, which may contribute to the age-related vulnerability to infection-induced cognitive decline.

192 citations


Journal ArticleDOI
TL;DR: The findings demonstrate that 10-year CP exposure was associated with a 1.707-fold increase in the risk of developing AD, which highlights the need to prevent progression of periodontal disease and promote healthcare service at the national level.
Abstract: Although recent short-term cross-sectional studies have revealed that chronic periodontitis (CP) may be a risk factor for increased cognitive impairment in patients with Alzheimer’s disease (AD), systematic reviews and long-term longitudinal studies have provided less clear evidence regarding the relationship between CP and AD. Therefore, we conducted a retrospective cohort study using the National Health Insurance Research Database (NHIRD) of Taiwan to determine whether patients with CP are at increased risk of developing AD. We conducted a retrospective matched-cohort study using the NHIRD of Taiwan. We identified 9291 patients newly diagnosed with CP between 1997 and 2004. A total of 18,672 patients without CP were matched to the patient cohort according to sex, age, index year, co-morbidity and urbanisation level. Cox proportional hazards regression analyses were performed to evaluate the subsequent risk of AD. Patients with CP had a higher prevalence of hyperlipidaemia, depression, traumatic brain injury and co-morbidities, as well as higher urbanisation levels, than those in the unexposed cohort (all p < 0.01). At the final follow-up, totals of 115 (1.24%) and 208 (1.11%) individuals in the CP exposed and unexposed groups, respectively, had developed AD. Patients with 10 years of CP exposure exhibited a higher risk of developing AD than unexposed groups (adjusted HR 1.707, 95% CI 1.152–2.528, p = 0.0077). Our findings demonstrate that 10-year CP exposure was associated with a 1.707-fold increase in the risk of developing AD. These findings highlight the need to prevent progression of periodontal disease and promote healthcare service at the national level.

166 citations


Journal ArticleDOI
TL;DR: iPSC technology is suitable to model both fAD and sAD and may provide a platform for developing new treatment strategies for these conditions, and elevated sensitivity to oxidative stress, as induced by amyloid oligomers or peroxide, was detected in both f- and s-derived neurons.
Abstract: Alzheimer’s disease (AD) is the most common type of dementia, affecting one in eight adults over 65 years of age. The majority of AD cases are sporadic, with unknown etiology, and only 5% of all patients with AD present the familial monogenic form of the disease. In the present study, our aim was to establish an in vitro cell model based on patient-specific human neurons to study the pathomechanism of sporadic AD. We compared neurons derived from induced pluripotent stem cell (iPSC) lines of patients with early-onset familial Alzheimer’s disease (fAD), all caused by mutations in the PSEN1 gene; patients with late-onset sporadic Alzheimer’s disease (sAD); and three control individuals without dementia. The iPSC lines were differentiated toward mature cortical neurons, and AD pathological hallmarks were analyzed by RT-qPCR, enzyme-linked immunosorbent assay, and Western blotting methods. Neurons from patients with fAD and patients with sAD showed increased phosphorylation of TAU protein at all investigated phosphorylation sites. Relative to the control neurons, neurons derived from patients with fAD and patients with sAD exhibited higher levels of extracellular amyloid-β 1–40 (Aβ1–40) and amyloid-β 1–42 (Aβ1–42). However, significantly increased Aβ1–42/Aβ1–40 ratios, which is one of the pathological markers of fAD, were observed only in samples of patients with fAD. Additionally, we detected increased levels of active glycogen synthase kinase 3 β, a physiological kinase of TAU, in neurons derived from AD iPSCs, as well as significant upregulation of amyloid precursor protein (APP) synthesis and APP carboxy-terminal fragment cleavage. Moreover, elevated sensitivity to oxidative stress, as induced by amyloid oligomers or peroxide, was detected in both fAD- and sAD-derived neurons. On the basis of the experiments we performed, we can conclude there is no evident difference except secreted Aβ1–40 levels in phenotype between fAD and sAD samples. To our knowledge, this is the first study in which the hyperphosphorylation of TAU protein has been compared in fAD and sAD iPSC-derived neurons. Our findings demonstrate that iPSC technology is suitable to model both fAD and sAD and may provide a platform for developing new treatment strategies for these conditions.

138 citations


Journal ArticleDOI
TL;DR: It is shown that MAO-B levels are increased not only in astrocytes but also in pyramidal neurons in AD brain, and the γ-secretase/MAO-b association may be a target for reducing Aβ levels using protein–protein interaction breakers.
Abstract: Increased levels of the pathogenic amyloid β-peptide (Aβ), released from its precursor by the transmembrane protease γ-secretase, are found in Alzheimer disease (AD) brains. Interestingly, monoamine oxidase B (MAO-B) activity is also increased in AD brain, but its role in AD pathogenesis is not known. Recent neuroimaging studies have shown that the increased MAO-B expression in AD brain starts several years before the onset of the disease. Here, we show a potential connection between MAO-B, γ-secretase and Aβ in neurons. MAO-B immunohistochemistry was performed on postmortem human brain. Affinity purification of γ-secretase followed by mass spectrometry was used for unbiased identification of γ-secretase-associated proteins. The association of MAO-B with γ-secretase was studied by coimmunoprecipitation from brain homogenate, and by in-situ proximity ligation assay (PLA) in neurons as well as mouse and human brain sections. The effect of MAO-B on Aβ production and Notch processing in cell cultures was analyzed by siRNA silencing or overexpression experiments followed by ELISA, western blot or FRET analysis. Methodology for measuring relative intraneuronal MAO-B and Aβ42 levels in single cells was developed by combining immunocytochemistry and confocal microscopy with quantitative image analysis. Immunohistochemistry revealed MAO-B staining in neurons in the frontal cortex, hippocampus CA1 and entorhinal cortex in postmortem human brain. Interestingly, the neuronal staining intensity was higher in AD brain than in control brain in these regions. Mass spectrometric data from affinity purified γ-secretase suggested that MAO-B is a γ-secretase-associated protein, which was confirmed by immunoprecipitation and PLA, and a neuronal location of the interaction was shown. Strikingly, intraneuronal Aβ42 levels correlated with MAO-B levels, and siRNA silencing of MAO-B resulted in significantly reduced levels of intraneuronal Aβ42. Furthermore, overexpression of MAO-B enhanced Aβ production. This study shows that MAO-B levels are increased not only in astrocytes but also in pyramidal neurons in AD brain. The study also suggests that MAO-B regulates Aβ production in neurons via γ-secretase and thereby provides a key to understanding the relationship between MAO-B and AD pathogenesis. Potentially, the γ-secretase/MAO-B association may be a target for reducing Aβ levels using protein–protein interaction breakers.

137 citations


Journal ArticleDOI
TL;DR: Re-analysis of AD patient-level data from failed clinical trials suggested by trend that use of simvastatin may slow the progression of cognitive decline, and to a greater extent in ApoE4 homozygotes, and results indicate that the use of statins may benefit all AD patients with potentially greater therapeutic efficacy in those homozygous for ApOE4.
Abstract: Despite substantial research and development investment in Alzheimer’s disease (AD), effective therapeutics remain elusive. Significant emerging evidence has linked cholesterol, β-amyloid and AD, and several studies have shown a reduced risk for AD and dementia in populations treated with statins. However, while some clinical trials evaluating statins in general AD populations have been conducted, these resulted in no significant therapeutic benefit. By focusing on subgroups of the AD population, it may be possible to detect endotypes responsive to statin therapy. Here we investigate the possible protective and therapeutic effect of statins in AD through the analysis of datasets of integrated clinical trials, and prospective observational studies. Re-analysis of AD patient-level data from failed clinical trials suggested by trend that use of simvastatin may slow the progression of cognitive decline, and to a greater extent in ApoE4 homozygotes. Evaluation of continual long-term use of various statins, in participants from multiple studies at baseline, revealed better cognitive performance in statin users. These findings were supported in an additional, observational cohort where the incidence of AD was significantly lower in statin users, and ApoE4/ApoE4-genotyped AD patients treated with statins showed better cognitive function over the course of 10-year follow-up. These results indicate that the use of statins may benefit all AD patients with potentially greater therapeutic efficacy in those homozygous for ApoE4.

133 citations


Journal ArticleDOI
TL;DR: Cognitive impairment in African Americans is associated with smaller changes in CSF tau markers but greater impact from similar WMH burden than Caucasians, which may lead to underdiagnosis of AD in African American.
Abstract: African Americans have been reported to have a higher prevalence of Alzheimer’s disease (AD) than Caucasians, but etiology-specific AD biomarkers have not been systematically analyzed in older African Americans. Coexisting cerebrovascular disease may also contribute to this increased prevalence. We hypothesized that cerebrospinal fluid (CSF) biomarkers of amyloid, neurodegeneration, and endothelial dysfunction would differ between older African Americans and Caucasians with normal cognition and cognitive impairment associated with AD. We prospectively recruited 135 older Americans to undergo detailed clinical, neuropsychological, genetic, magnetic resonance imaging (MRI), and CSF analysis from 2013 to 2015 at Emory University (Atlanta, GA, USA). We compared levels of CSF markers for β-amyloid (Aβ42, Aβ40), total and phosphorylated tau (t-tau and p-tau181, respectively), endothelial dysfunction (soluble vascular cell adhesion molecule 1, soluble intercellular adhesion molecule 1), α-synuclein, and neurodegeneration (neurofilament light chain [NfL]), as well as MRI markers, for hippocampal atrophy and cerebrovascular disease (white matter hyperintensity [WMH] volume). Sixty-five older African Americans (average age, 69.1 years) and 70 older Caucasians (average age, 70.8 years) were included. After adjusting for demographic variables, AD risk alleles, and cognitive function, older African Americans had lower CSF levels of p-tau181 (difference of 7.4 pg/ml; 95% CI, 3.7–11.2 pg/ml; p < 0.001), t-tau (difference of 23.6 pg/ml; 95% CI, 9.5–37.7; p = 0.001), and Aβ40 (difference of 1.35 ng/ml; 95% CI, 0.29–2.42 ng/ml; p = 0.013) despite similar levels of Aβ42, NfL, WMH volume, and hippocampal volume. Cognitively impaired African Americans also had lower CSF t-tau/Aβ42 (difference of 0.255 per 1-SD change in composite cognition; 95% CI, 0.100–0.409; p = 0.001) and p-tau181/Aβ42 (difference of 0.076 per 1-SD change in composite cognition; 95% CI, 0.031–0.122; p = 0.001). These could not be explained by measured biomarkers of non-AD processes, but African Americans may be more susceptible than Caucasians to the cognitive effects of WMH. Despite comparable levels of CSF Aβ42 and Aβ42/Aβ40, cognitive impairment in African Americans is associated with smaller changes in CSF tau markers but greater impact from similar WMH burden than Caucasians. Race-associated differences in CSF tau markers and ratios may lead to underdiagnosis of AD in African Americans. ClinicalTrials.gov, NCT02089555 . Retrospectively registered on 14 March 2014.

128 citations


Journal ArticleDOI
Chun-ling Dai1, Yunn Chyn Tung1, Fei Liu1, Cheng-Xin Gong1, Khalid Iqbal1 
TL;DR: The findings suggest the potential of passive immunization targeting proximal N-terminal domain tau 6–18 as a disease-modifying approach to AD and related tauopathies.
Abstract: Accumulation of hyperphosphorylated tau protein is a histopathological hallmark of Alzheimer’s disease (AD) and related tauopathies. Currently, there is no effective treatment available for these progressive neurodegenerative diseases. In recent years, tau immunotherapy has shown great potential in animal models. We report the effect of immunization with tau antibodies 43D against tau 6–18 and 77E9 against tau 184–195 on tau and amyloid-β (Aβ) pathologies and cognition in triple-transgenic (3×Tg)-AD mice at mild to moderate stages of the disease. We immunized 12-month-old female 3×Tg-AD mice with two to six or seven intravenous weekly doses of 15 μg of mouse monoclonal antibody 43D, 77E9, a combination of one-half dose each of 43D and 77E9, or as control of mouse immunoglobulin G (IgG). Age-matched wild-type mice treated with mouse IgG or a mixture of 43D and 77E9 were also used as controls. The effect of immunization with tau antibodies on tau and Aβ pathologies was assessed by Western blot and immunofluorescence analysis, and the effect on cognition was analyzed by using Morris water maze, one-trial novel object recognition, and novel object location tasks. We found that two doses of 43D and 77E9 reduced total tau but had no significant impact on hyperphosphorylation of tau. However, six doses of 43D reduced levels of both total tau and tau hyperphosphorylated at Ser262/356 and Ser396/404 sites in the hippocampus. Importantly, both 43D and 77E9 antibodies rescued spatial memory and short-term memory impairments in 3×Tg-AD mice. The beneficial effect of 43D and 77E9 antibodies on cognitive performance was sustained up to 3 months after the last dose. Six doses of immunization with 43D also decreased amyloid precursor protein (APP) level in CA1 and amyloid plaques in subiculum, and showed a trend toward reducing Aβ40 and Aβ42 in the forebrain. Immunization with 43D increased levels of complement components C1 and C9 and resulted in activation of microglia, especially surrounding Aβ plaques. These findings suggest the potential of passive immunization targeting proximal N-terminal domain tau 6–18 as a disease-modifying approach to AD and related tauopathies.

Journal ArticleDOI
TL;DR: The assessment of circulating brain-enriched microRNAs as potential biomarkers for Alzheimer’s disease, frontotemporal dementia, Parkinson's disease, and amyotrophic lateral sclerosis suggests the possibility of developing microRNA-based diagnostics for detection and differentiation of NDs.
Abstract: Minimally invasive specific biomarkers of neurodegenerative diseases (NDs) would facilitate patient selection and disease progression monitoring. We describe the assessment of circulating brain-enriched microRNAs as potential biomarkers for Alzheimer’s disease (AD), frontotemporal dementia (FTD), Parkinson’s disease (PD), and amyotrophic lateral sclerosis (ALS). In this case-control study, the plasma samples were collected from 250 research participants with a clinical diagnosis of AD, FTD, PD, and ALS, as well as from age- and sex-matched control subjects (n = 50 for each group), recruited from 2003 to 2015 at the University of Pennsylvania Health System, including the Alzheimer’s Disease Center, the Parkinson’s Disease and Movement Disorders Center, the Frontotemporal Degeneration Center, and the Amyotrophic Lateral Sclerosis Clinic. Each group was randomly divided into training and confirmation sets of equal size. To evaluate the potential of circulating microRNAs enriched in specific brain regions affected by NDs and present in synapses as biomarkers of NDs, the levels of 37 brain-enriched and inflammation-associated microRNAs in the plasma of all participants were measured using individual qRT-PCR. A “microRNA pair” approach was used for data normalization. MicroRNA pairs and their combinations (classifiers) capable of differentiating NDs from control and from each other were defined using independently and jointly analyzed training and confirmation datasets. AD, PD, FTD, and ALS are differentiated from control with accuracy of 0.89, 0.90, 0.88, and 0.83 (AUCs, 0.96, 0.96, 0.94, and 0.93), respectively; NDs are differentiated from each other with accuracy ranging from 0.77 (AUC, 0.87) for AD vs. FTD to 0.93 (AUC, 0.98) for AD vs. ALS. The data further indicate sex dependence of some microRNA markers. The average increase in accuracy in distinguishing ND from control for all and male/female groups is 0.06; the largest increase is for ALS, from 0.83 for all participants to 0.92/0.98 for male/female participants. The work presented here suggests the possibility of developing microRNA-based diagnostics for detection and differentiation of NDs. Larger multicenter clinical studies are needed to further evaluate circulating brain-enriched microRNAs as biomarkers for NDs and to investigate their association with other ND biomarkers in clinical trial settings.

Journal ArticleDOI
TL;DR: The progress that has been made to date using patient-derived neurons to recapitulate key aspects of AD pathology is discussed and how these models have contributed to a deeper understanding of AD molecular mechanisms are discussed.
Abstract: A major challenge to our understanding of the molecular mechanisms of Alzheimer's disease (AD) has been the lack of physiologically relevant in vitro models which capture the precise patient genome, in the cell type of interest, with physiological expression levels of the gene(s) of interest. Induced pluripotent stem cell (iPSC) technology, together with advances in 2D and 3D neuronal differentiation, offers a unique opportunity to overcome this challenge and generate a limitless supply of human neurons for in vitro studies. iPSC-neuron models have been widely employed to model AD and we discuss in this review the progress that has been made to date using patient-derived neurons to recapitulate key aspects of AD pathology and how these models have contributed to a deeper understanding of AD molecular mechanisms, as well as addressing the key challenges posed by using this technology and what progress is being made to overcome these. Finally, we highlight future directions for the use of iPSC-neurons in AD research and highlight the potential value of this technology to neurodegenerative research in the coming years.

Journal ArticleDOI
TL;DR: Plasma levels of Aβ oligomers could be assessed using MDS, which might be a simple, noninvasive, and accessible assay for evaluating brain amyloid deposition related to AD pathology.
Abstract: Soluble amyloid-β (Aβ) oligomers are the major toxic substances associated with the pathology of Alzheimer’s disease (AD). The ability to measure Aβ oligomer levels in the blood would provide simple and minimally invasive tools for AD diagnostics. In the present study, the recently developed Multimer Detection System (MDS) for AD, a new enzyme-linked immunosorbent assay for measuring Aβ oligomers selectively, was used to detect Aβ oligomers in the plasma of patients with AD and healthy control individuals. Twenty-four patients with AD and 37 cognitively normal control individuals underwent extensive clinical evaluations as follows: blood sampling; detailed neuropsychological tests; brain magnetic resonance imaging; cerebrospinal fluid (CSF) measurement of Aβ42, phosphorylated tau protein (pTau), and total tau protein (tTau); and 11C-Pittsburgh compound B (PIB) positron emission tomography. Pearson’s correlation analyses between the estimations of Aβ oligomer levels by MDS and other conventional AD biomarkers (CSF Aβ42, pTau, and tTau, as well as PIB standardized uptake value ratio [PIB SUVR]) were conducted. ROC analyses were used to compare the diagnostic performance of each biomarker. The plasma levels of Aβ oligomers by MDS were higher in patients with AD than in normal control individuals, and they correlated well with conventional AD biomarkers (levels of Aβ oligomers by MDS vs. CSF Aβ42, r = −0.443; PIB SUVR, r = 0.430; CSF pTau, r = 0.530; CSF tTau, r = 0.604). The sensitivity and specificity of detecting plasma Aβ oligomers by MDS for differentiating AD from the normal controls were 78.3% and 86.5%, respectively. The AUC for plasma Aβ oligomers by MDS was 0.844, which was not significantly different from the AUC of other biomarkers (p = 0.250). Plasma levels of Aβ oligomers could be assessed using MDS, which might be a simple, noninvasive, and accessible assay for evaluating brain amyloid deposition related to AD pathology.

Journal ArticleDOI
TL;DR: It is suggested that amyloid PET may have added value over the standardized diagnostic work-up in early-onset dementia patients with uncertain clinical diagnosis and altered the patient management plan.
Abstract: Early-onset dementia patients often present with atypical clinical symptoms, hampering an accurate clinical diagnosis. The purpose of the present study was to assess the diagnostic impact of the amyloid-positron emission tomography (PET) imaging agent [18F]flutemetamol in early-onset dementia patients, in terms of change in (confidence in) diagnosis and patient management plan. This prospective bi-center study included 211 patients suspected of early-onset dementia who visited a tertiary memory clinic. Patients were eligible with Mini Mental State Examination ≥ 18 and age at diagnosis ≤ 70 years and in whom the diagnostic confidence was <90% after routine diagnostic work-up. All patients underwent [18F]flutemetamol PET, which was interpreted as amyloid-negative or amyloid-positive based on visual rating. Before and after disclosing the PET results, we assessed the diagnostic confidence (using a visual analog scale of 0–100%) and clinical diagnosis. The impact of [18F]flutemetamol PET on the patient management plan was also evaluated. [18F]flutemetamol PET scans were positive in 133 out of 211 (63%) patients, of whom 110 out of 144 (76%) patients had a pre-PET Alzheimer’s disease (AD) diagnosis and 23 out of 67 (34%) patients had a non-AD diagnosis. After disclosure of PET results, 41/211 (19%) diagnoses changed. Overall, diagnostic confidence increased from 69 ± 12% to 88 ± 15% after disclosing PET results (P < 0.001; in 87% of patients). In 79 (37%) patients, PET results led to a change in patient management and predominantly the initiation of AD medication when PET showed evidence for amyloid pathology. [18F]flutemetamol PET changed clinical diagnosis, increased overall diagnostic confidence, and altered the patient management plan. Our results suggest that amyloid PET may have added value over the standardized diagnostic work-up in early-onset dementia patients with uncertain clinical diagnosis. This study provides evidence for the recommendations put forward in the appropriate use criteria for amyloid PET in clinical practice. Nederlands Trial Register NTR3743 . Registered 7 December 2012.

Journal ArticleDOI
TL;DR: The correlation between retinal vascular changes and Aβ plaque load supports the possibility of a vascular component to AD.
Abstract: Retinal imaging may serve as an alternative approach to monitor brain pathology in Alzheimer’s disease (AD). In this study, we investigated the association between retinal vascular and structural changes and cerebral amyloid-β (Aβ) plaque load in an elderly cohort. We studied a total of 101 participants, including 73 elderly subjects (79 ± 5 years, 22 male) with no clinical diagnosis of AD but reporting some subjective memory change and an additional 28 subjects (70 ± 9 years, 16 male) with clinically established AD. Following a complete dilated ocular examination, the amplitude of retinal vascular pulsations and dynamic response, retinal nerve fibre layer thickness and retinal ganglion cell layer (RGCL) thickness were determined in all patients. Systemic blood pressure and carotid-to-femoral pulse wave velocity were measured. The elderly cohort also underwent magnetic resonance imaging and 18F-florbetaben (FBB)-positron emission tomographic amyloid imaging to measure neocortical Aβ standardised uptake value ratio (SUVR), and this was used to characterise a ‘preclinical’ group (SUVR >1.4). The mean FBB neocortical SUVR was 1.35 ± 0.3. The amplitude of retinal venous pulsations correlated negatively with the neocortical Aβ scores (p < 0.001), whereas the amplitude of retinal arterial pulsations correlated positively with neocortical Aβ scores (p < 0.01). RGCL thickness was significantly lower in the clinical AD group (p < 0.05). The correlation between retinal vascular changes and Aβ plaque load supports the possibility of a vascular component to AD. Dynamic retinal vascular parameters may provide an additional inexpensive tool to aid in the preclinical assessment of AD.

Journal ArticleDOI
TL;DR: The combination of CSF biomarkers linked to different aspects of neurodegeneration, such as FABP3, α-syn, and AD biomarkers, improves the biochemical characterization of AD and Lewy body disorders.
Abstract: Neurodegenerative disorders such as Alzheimer’s disease (AD), Parkinson’s disease with dementia (PDD), and dementia with Lewy bodies (DLB) share clinical and molecular features. Cerebrospinal fluid (CSF) biomarkers may help the characterization of these diseases, improving the differential diagnosis. We evaluated the diagnostic performance of five CSF biomarkers across a well-characterized cohort of patients diagnosed with AD, DLB, PDD, and Parkinson’s disease (PD). A total of 208 patients were enrolled in 3 European centers. The diagnostic groups (AD, n = 48; DLB, n = 40; PDD, n = 20; PD, n = 54) were compared with cognitively healthy neurological control subjects (patients with other neurological diseases [OND], n = 46). CSF levels of fatty acid binding protein 3, heart type (FABP3), α-synuclein (α-syn), amyloid-β peptide 1–42, total tau (t-tau), and phosphorylated tau 181 (p-tau) were assessed with immunoassays. Univariate and multivariate statistical analyses were applied to calculate the diagnostic value of the biomarkers as well as their association with clinical scores. FABP3 levels were significantly increased in patients with AD and DLB compared with those with PD and OND (p < 0.001). CSF t-tau, p-tau, and α-syn were significantly higher in patients with AD than in patients with PDD, DLB, PD, and OND. Combination of FABP3 with p-tau showed high accuracy for the differential diagnosis between AD and DLB (AUC 0.92), whereas patients with AD were separated from those with PDD using a combination of p-tau, FABP3, and α-syn (AUC 0.96). CSF FABP3 was inversely associated with Mini Mental State Examination score in the whole cohort (r = −0.42, p < 0.001). The combination of CSF biomarkers linked to different aspects of neurodegeneration, such as FABP3, α-syn, and AD biomarkers, improves the biochemical characterization of AD and Lewy body disorders.

Journal ArticleDOI
TL;DR: In this paper, the authors compared the binding properties of several tau positron emission tomography tracers (THK5117, THK5351, T807 (also known as AV1451; flortaucipir), and PBB3) head to head in the same human brain tissue.
Abstract: The aim of this study was to compare the binding properties of several tau positron emission tomography tracers—THK5117, THK5351, T807 (also known as AV1451; flortaucipir), and PBB3—head to head in the same human brain tissue. Binding assays were performed to compare the regional distribution of 3H-THK5117 and 3H-THK5351 in postmortem tissue from three Alzheimer’s disease (AD) cases and three control subjects in frontal and temporal cortices as well as in the hippocampus. Competition binding assays between THK5351, THK5117, PBB3, and T807, as well as off-target binding of THK5117 and T807 toward monoamine oxidase B (MAO-B), were performed using binding assays in brain homogenates and autoradiography of three AD cases. Regional binding of 3H-THK5117 and 3H-THK5351 was similar, except in the temporal cortex, which showed higher 3H-THK5117 binding. Saturation studies demonstrated two binding sites for 3H-THK5351 (K d1 = 5.6 nM, Bmax = 76 pmol/g; K d2 = 1 nM, Bmax = 40 pmol/g). Competition studies in the hippocampus between 3H-THK5351 and unlabeled THK5351, THK5117, and T807 revealed super-high-affinity sites for all three tracers (THK5351 K i = 0.1 pM; THK5117 K i = 0.3 pM; T807 K i = 0.2 pM) and an additional high-affinity site (THK5351 K i = 16 nM; THK5117 K i = 20 nM; T807 K i = 78nM). 18F-T807, 11C-THK5351, and 11C-PBB3 autoradiography of large frozen sections from three AD brains showed similar regional binding for the three tracers, with lower binding intensity for 11C-PBB3. Unlabeled THK5351 and T807 displaced 11C-THK5351 to a similar extent and a lower extent, respectively, compared with 11C-PBB3. Competition with the MAO-B inhibitor 3H-l-deprenyl was observed for THK5117 and T807 in the hippocampus (THK5117 K i = 286 nM; T807 K i = 227 nM) and the putamen (THK5117 K i = 148 nM; T807 K i = 135 nM). 3H-THK5351 binding was displaced using autoradiography competition with unlabeled THK5351 and T807 in cortical areas by 70–80% and 60–77%, respectively, in the basal ganglia, whereas unlabeled deprenyl displaced 3H-THK5351 binding by 40% in the frontal cortex and 50% in the basal ganglia. THK5351, THK5117, and T807 seem to target similar binding sites, but with different affinities, whereas PBB3 seems to target its own binding site. Both THK5117 and T807 demonstrated off-target binding in the hippocampus and putamen with a ten times lower binding affinity to the MAO-B inhibitor deprenyl compared with 3H-THK5351.

Journal ArticleDOI
Yanshi Hu1, Juncai Xin1, Ying Hu1, Lei Zhang2, Ju Wang1 
TL;DR: The network features of these AD-related genes were analyzed in the context of human interactome and an AD-specific network was inferred using the Steiner minimal tree algorithm, and novel genes potentially associated with AD were identified.
Abstract: Our understanding of the molecular mechanisms underlying Alzheimer’s disease (AD) remains incomplete. Previous studies have revealed that genetic factors provide a significant contribution to the pathogenesis and development of AD. In the past years, numerous genes implicated in this disease have been identified via genetic association studies on candidate genes or at the genome-wide level. However, in many cases, the roles of these genes and their interactions in AD are still unclear. A comprehensive and systematic analysis focusing on the biological function and interactions of these genes in the context of AD will therefore provide valuable insights to understand the molecular features of the disease. In this study, we collected genes potentially associated with AD by screening publications on genetic association studies deposited in PubMed. The major biological themes linked with these genes were then revealed by function and biochemical pathway enrichment analysis, and the relation between the pathways was explored by pathway crosstalk analysis. Furthermore, the network features of these AD-related genes were analyzed in the context of human interactome and an AD-specific network was inferred using the Steiner minimal tree algorithm. We compiled 430 human genes reported to be associated with AD from 823 publications. Biological theme analysis indicated that the biological processes and biochemical pathways related to neurodevelopment, metabolism, cell growth and/or survival, and immunology were enriched in these genes. Pathway crosstalk analysis then revealed that the significantly enriched pathways could be grouped into three interlinked modules—neuronal and metabolic module, cell growth/survival and neuroendocrine pathway module, and immune response-related module—indicating an AD-specific immune-endocrine-neuronal regulatory network. Furthermore, an AD-specific protein network was inferred and novel genes potentially associated with AD were identified. By means of network and pathway-based methodology, we explored the pathogenetic mechanism underlying AD at a systems biology level. Results from our work could provide valuable clues for understanding the molecular mechanism underlying AD. In addition, the framework proposed in this study could be used to investigate the pathological molecular network and genes relevant to other complex diseases or phenotypes.

Journal ArticleDOI
TL;DR: There is a strong case for greater investment in risk factor reduction programmes that target modifiable lifestyle factors, particularly increased engagement in physical activity, as well as for more realistic estimates of potential dementia prevention.
Abstract: At present, dementia has no known cure. Interventions to delay onset and reduce prevalence of the disease are therefore focused on risk factor reduction. Previous population attributable risk estimates for western countries may have been underestimated as a result of the relatively low rates of midlife obesity and the lower weighting given to that variable in statistical models. Levin’s Attributable Risk which assumes independence of risk factors was used to calculate the proportion of dementia attributable to seven modifiable risk factors (midlife obesity, physical inactivity, smoking, low educational attainment, diabetes mellitus, midlife hypertension and depression) in Australia. Using a recently published modified formula and survey data from the Australia Diabetes, Obesity and Lifestyle Study, a more realistic population attributable risk estimate which accounts for non-independence of risk factors was calculated. Finally, the effect of a 5–20% reduction in each risk factor per decade on future dementia prevalence was computed. Taking into consideration that risk factors do not operate independently, a more conservative estimate of 48.4% of dementia cases (117,294 of 242,500 cases) was found to be attributable to the seven modifiable lifestyle factors under study. We calculated that if each risk factor was to be reduced by 5%, 10%, 15% and 20% per decade, dementia prevalence would be reduced by between 1.6 and 7.2% in 2020, 3.3–14.9% in 2030, 4.9–22.8% in 2040 and 6.6–30.7% in 2050. Our largely theory-based findings suggest a strong case for greater investment in risk factor reduction programmes that target modifiable lifestyle factors, particularly increased engagement in physical activity. However, further data on risk factor treatment and dementia risk reduction from population-based studies are needed to investigate whether our estimates of potential dementia prevention are indeed realistic.

Journal ArticleDOI
TL;DR: Although the participants with EOAD showed a faster decline in ADAS-Cog, had a longer duration of AD before diagnosis, the cognitive and global responses to ChEI treatment and the longitudinal outcomes after 3 years were similar between the age-at-onset groups, stressing the importance of early treatment in adequate doses for all patients with AD.
Abstract: Whether age at onset influences Alzheimer’s disease (AD) progression and the effectiveness of cholinesterase inhibitor (ChEI) therapy is not clear. We aimed to compare longitudinal cognitive and global outcomes in ChEI-treated patients with early-onset Alzheimer’s disease (EOAD) versus late-onset Alzheimer’s disease (LOAD) in clinical practice. This 3-year, prospective, observational, multicentre study included 1017 participants with mild to moderate AD; 143 had EOAD (age at onset < 65 years) and 874 had LOAD (age at onset ≥ 65 years). At baseline and semi-annually, patients were assessed using cognitive, global and activities of daily living (ADL) scales, and the dose of ChEI was recorded. Potential predictors of decline were analysed using mixed-effects models. Six-month response to ChEI therapy and long-term prognosis in cognitive and global performance were similar between the age-at-onset groups. However, deterioration was significantly faster when using the Alzheimer’s Disease Assessment Scale–Cognitive subscale (ADAS-Cog) over 3 years in participants with EOAD than in those with LOAD; hence, prediction models for the mean ADAS-Cog trajectories are presented. The younger cohort had a larger proportion of homozygote apolipoprotein E (APOE) e4 allele carriers than the older cohort; however, APOE genotype was not a significant predictor of cognitive impairment in the multivariate models. A slower rate of cognitive progression was related to initiation of ChEIs at an earlier stage of AD, higher ChEI dose and fewer years of education in both groups. In LOAD, male sex, better instrumental ADL ability and no antipsychotic drug use were additional protective characteristics. The older patients received a lower ChEI dose than the younger individuals during most of the study period. Although the participants with EOAD showed a faster decline in ADAS-Cog, had a longer duration of AD before diagnosis, and had a higher frequency of two APOE e4 alleles than those with LOAD, the cognitive and global responses to ChEI treatment and the longitudinal outcomes after 3 years were similar between the age-at-onset groups. A higher mean dose of ChEI and better cognitive status at the start of therapy were independent protective factors in both groups, stressing the importance of early treatment in adequate doses for all patients with AD.

Journal ArticleDOI
TL;DR: The fluctuating activity of Rho GTPases in various stages of AD pathogenesis and in several in vitro and in vivo AD models is summarized.
Abstract: The progress we have made in understanding Alzheimer’s disease (AD) pathogenesis has led to the identification of several novel pathways and potential therapeutic targets. Rho GTPases have been implicated as critical components in AD pathogenesis, but their various functions and interactions make understanding their complex signaling challenging to study. Recent advancements in both the field of AD and Rho GTPase drug development provide novel tools for the elucidation of Rho GTPases as a viable target for AD. Herein, we summarize the fluctuating activity of Rho GTPases in various stages of AD pathogenesis and in several in vitro and in vivo AD models. We also review the current pharmacological tools such as NSAIDs, RhoA/ROCK, Rac1, and Cdc42 inhibitors used to target Rho GTPases and their use in AD-related studies. Finally, we summarize the behavioral modifications following Rho GTPase modulation in several AD mouse models. As key regulators of several AD-related signals, Rho GTPases have been studied as targets in AD. However, a consensus has yet to be reached regarding the stage at which targeting Rho GTPases would be the most beneficial. The studies discussed herein emphasize the critical role of Rho GTPases and the benefits of their modulation in AD.

Journal ArticleDOI
TL;DR: Results indicate that higher amounts of a potentially toxic inorganic selenium form in cerebrospinal fluid may predict conversion from mild cognitive impairment to Alzheimer’s dementia.
Abstract: Little is known about factors influencing progression from mild cognitive impairment to Alzheimer’s dementia. A potential role of environmental chemicals and specifically of selenium, a trace element of nutritional and toxicological relevance, has been suggested. Epidemiologic studies of selenium are lacking, however, with the exception of a recent randomized trial based on an organic selenium form. We determined concentrations of selenium species in cerebrospinal fluid sampled at diagnosis in 56 participants with mild cognitive impairment of nonvascular origin. We then investigated the relation of these concentrations to subsequent conversion from mild cognitive impairment to Alzheimer’s dementia. Twenty-one out of the 56 subjects developed Alzheimer’s dementia during a median follow-up of 42 months; four subjects developed frontotemporal dementia and two patients Lewy body dementia. In a Cox proportional hazards model adjusting for age, sex, duration of sample storage, and education, an inorganic selenium form, selenate, showed a strong association with Alzheimer’s dementia risk, with an adjusted hazard ratio of 3.1 (95% confidence interval 1.0–9.5) in subjects having a cerebrospinal fluid content above the median level, compared with those with lower concentration. The hazard ratio of Alzheimer’s dementia showed little departure from unity for all other inorganic and organic selenium species. These associations were similar in analyses that measured exposure on a continuous scale, and also after excluding individuals who converted to Alzheimer’s dementia at the beginning of the follow-up. These results indicate that higher amounts of a potentially toxic inorganic selenium form in cerebrospinal fluid may predict conversion from mild cognitive impairment to Alzheimer’s dementia.

Journal ArticleDOI
TL;DR: The findings suggest that free water analysis isolates probable mild vascular damage from WM microstructural alterations and underscore the importance of normal-appearing WM changes underlying cognitive and functional impairment in AD with and without cerebrovascular disease.
Abstract: Mixed vascular and neurodegenerative dementia, such as Alzheimer’s disease (AD) with concomitant cerebrovascular disease, has emerged as the leading cause of age-related cognitive impairment. The brain white matter (WM) microstructural changes in neurodegeneration well-documented by diffusion tensor imaging (DTI) can originate from brain tissue or extracellular free water changes. The differential microstructural and free water changes in AD with and without cerebrovascular disease, especially in normal-appearing WM, remain largely unknown. To cover these gaps, we aimed to characterize the WM free water and tissue microstructural changes in AD and mixed dementia as well as their associations with cognition using a novel free water imaging method. We compared WM free water and free water-corrected DTI measures as well as white matter hyperintensity (WMH) in patients with AD with and without cerebrovascular disease, patients with vascular dementia, and age-matched healthy control subjects. The cerebrovascular disease groups had higher free water than the non-cerebrovascular disease groups. Importantly, besides the cerebrovascular disease groups, patients with AD without cerebrovascular disease also had increased free water in normal-appearing WM compared with healthy control subjects, reflecting mild vascular damage. Such free water increases in WM or normal-appearing WM (but not WMH) contributed to dementia severity. Whole-brain voxel-wise analysis revealed a close association between widespread free water increases and poorer attention, executive functioning, visual construction, and motor performance, whereas only left hemispheric free water increases were related to language deficits. Moreover, compared with the original DTI metrics, the free water-corrected DTI metric revealed tissue damage-specific (frontal and occipital) microstructural differences between the cerebrovascular disease and non-cerebrovascular disease groups. In contrast to both lobar and subcortical/brainstem free water increases, only focal lobar microstructural damage was associated with poorer cognitive performance. Our findings suggest that free water analysis isolates probable mild vascular damage from WM microstructural alterations and underscore the importance of normal-appearing WM changes underlying cognitive and functional impairment in AD with and without cerebrovascular disease. Further developed, the combined free water and tissue neuroimaging assays could help in differential diagnosis, treatment planning, and disease monitoring of patients with mixed dementia.

Journal ArticleDOI
TL;DR: The development of hypertension, hyperlipidemia, or both, following a diagnosis of incident diabetes is secondary to diabetes onset and likely mediated through insulin resistance associated with diabetes, which does not further accentuate dementia risk.
Abstract: The pathophysiology of insulin resistance-induced hypertension and hyperlipidemia might entail differences in dementia risk in cases with hypertension and hyperlipidemia without prior diabetes mellitus (DM). This study investigated whether incident hypertension, incident hyperlipidemia, or both, increased the dementia risk in patients with and without DM. A nationwide retrospective cohort study was conducted. The study sample was obtained from the National Health Insurance Research Database. We enrolled 10,316 patients with a new diagnosis of DM between 2000 and 2002 in the DM cohort. For the same period, we randomly selected 41,264 patients without DM in the non-DM cohort (matched by age and sex at a 1:4 ratio with the DM cohort). Both cohorts were then separately divided into four groups on the basis of incident hypertension or incident hyperlipidemia status. In total, 51,580 patients aged between 20 and 99 years were enrolled. The dementia risk was higher in the DM cohort than in the non-DM cohort (adjusted hazard ratio (HR) = 1.47, 95% confidence interval (CI) = 1.30–1.67, p < 0.001). In the DM cohort, the dementia risk in patients with both hypertension and hyperlipidemia did not significantly increase compared with that in those without hypertension and hyperlipidemia (p = 0.529). Similar results were observed in those with either hypertension (p = 0.341) or hyperlipidemia (p = 0.189). In the non-DM cohort, patients with both hypertension and hyperlipidemia had a higher dementia risk (adjusted HR = 1.33, 95% CI = 1.09–1.63, p = 0.006). The results remained largely unchanged in patients with only hypertension (adjusted HR = 1.22, 95% CI = 1.05–1.40, p = 0.008). However, the dementia risk did not increase significantly in patients with only hyperlipidemia (p = 0.187). The development of hypertension, hyperlipidemia, or both, following a diagnosis of incident diabetes is secondary to diabetes onset and likely mediated through insulin resistance associated with diabetes, which does not further accentuate dementia risk. DM itself (i.e., the systemic influence of hyperglycemia) might be the main driver of increased dementia risk.

Journal ArticleDOI
TL;DR: Anemia is an independent risk factor for dementia incidence, with a marked increase of risk associated with severe anemia.
Abstract: The aim of this study was to investigate whether anemia is associated with dementia incidence in the elderly. Using the Korean National Health Insurance Service-National Health Screening Cohort (NHIS-HEALS) database, we identified 66-year-old subjects (n = 37,900) who were free of dementia and stroke. Anemia (hemoglobin < 12 g/dl for women and < 13 g/dl for men) and the severity of anemia (mild, moderate, or severe) were defined using World Health Organization criteria. The incidence of dementia was identified using International Classification of Diseases, Tenth Revision, dementia diagnosis codes (F00, F01, F02, F03, and G30) with prescription of an antidementia drug. Cox proportional hazards regression models were used to assess HRs for dementia incidence according to anemia. After adjusting for sex, baseline cognitive state, body mass index, smoking status, household income, disability, depression, hypertension, diabetes, and dyslipidemia, we found a significant association between anemia and dementia incidence (adjusted HR 1.24; 95% CI 1.02–1.51). The adjusted HRs for incidence of dementia according to the severity of anemia were 1.19 (95% CI 0.98–1.45) for those with mild anemia, 1.47 (95% CI 0.97–2.21) for those with moderate anemia, and 5.72 (95% CI 1.84–17.81) for those with severe anemia, showing a significant p value for trend (p = 0.003). Anemia is an independent risk factor for dementia incidence, with a marked increase of risk associated with severe anemia.

Journal ArticleDOI
TL;DR: A consensus was achieved on the general recommendations to be followed in developing procedures and tools for neuropsychological assessment, with the aim of harmonising tools and procedures to achieve more reliable data on the cognitive-behavioural examination.
Abstract: Cognitive, behavioural, and functional assessment is crucial in longitudinal studies of neurodegenerative dementias (NDD). Central issues, such as the definition of the study population (asymptomatic, at risk, or individuals with dementia), the detection of change/decline, and the assessment of relevant outcomes depend on quantitative measures of cognitive, behavioural, and functional status.Currently, we are far from having available reliable protocols and tools for the assessment of dementias in Europe. The main problems are the heterogeneity of the tools used across different European countries, the lack of standardisation of administration and scoring methods across centres, and the limited information available about the psychometric properties of many tests currently in widespread use. This situation makes it hard to compare results across studies carried out in different centres, thus hampering research progress, in particular towards the contribution to a "big data" common data set.We present here the results of a project funded by the Joint Program for Neurodegenerative Diseases (JPND) and by the Italian Ministry of Health. The project aimed at providing a consensus framework for the harmonisation of assessment tools to be applied to research in neurodegenerative disorders affecting cognition across Europe. A panel of European experts reviewed the current methods of neuropsychological assessment, identified pending issues, and made recommendations for the harmonisation of neuropsychological assessment of neurodegenerative dementias in Europe.A consensus was achieved on the general recommendations to be followed in developing procedures and tools for neuropsychological assessment, with the aim of harmonising tools and procedures to achieve more reliable data on the cognitive-behavioural examination. The results of this study should be considered as a first step to enhancing a common view and practise on NDD assessment across European countries.

Journal ArticleDOI
TL;DR: Mixture modeling is a robust method to determine cutoffs for CSF β-amyloid 1–42 that might better capture biological changes that are related to AD than cutoffs based on clinical diagnosis.
Abstract: We sought to define a cutoff for β-amyloid 1–42 in cerebrospinal fluid (CSF), a key marker for Alzheimer’s disease (AD), with data-driven Gaussian mixture modeling in a memory clinic population. We performed a combined cross-sectional and prospective cohort study. We selected 2462 subjects with subjective cognitive decline, mild cognitive impairment, AD-type dementia, and dementia other than AD from the Amsterdam Dementia Cohort. We defined CSF β-amyloid 1–42 cutoffs by data-driven Gaussian mixture modeling in the total population and in subgroups based on clinical diagnosis, age, and apolipoprotein E (APOE) genotype. We investigated whether abnormal β-amyloid 1–42 as defined by the data-driven cutoff could better predict progression to AD-type dementia than abnormal β-amyloid 1–42 defined by a clinical diagnosis-based cutoff using Cox proportional hazards regression. In the total group of patients, we found a cutoff for abnormal CSF β-amyloid 1–42 of 680 pg/ml (95% CI 660–705 pg/ml). Similar cutoffs were found within diagnostic and APOE genotype subgroups. The cutoff was higher in elderly subjects than in younger subjects. The data-driven cutoff was higher than our clinical diagnosis-based cutoff and had a better predictive accuracy for progression to AD-type dementia in nondemented subjects (HR 7.6 versus 5.2, p < 0.01). Mixture modeling is a robust method to determine cutoffs for CSF β-amyloid 1–42. It might better capture biological changes that are related to AD than cutoffs based on clinical diagnosis.

Journal ArticleDOI
TL;DR: Over the age of 60 years, consistent inverse associations were observed between systolic blood pressure and all-cause dementia, mixed Alzheimer/vascular dementia, and Alzheimer disease, but not with vascular dementia, when adjusting for age, sex, education, and other relevant covariates.
Abstract: A lot of attention has been paid to the relationship of blood pressure and dementia because epidemiological research has reported conflicting evidence Observational data has shown that midlife hypertension is a risk factor for cognitive decline and dementia later in life, whereas there is evidence that low blood pressure is predictive in later life The aim of the present study was to examine the association between dementia and blood pressure measured up to 27 years (mean 176 years) prior to ascertainment In Nord-Trondelag County, Norway, incident dementia data were collected during 1995–2011, and the diagnoses were validated by a panel of experts in the field By using the subjects’ personal identification numbers, the dementia data were linked to data from the Nord-Trondelag Health Study (the HUNT Study), a large, population-based health study performed in 1984–1986 (HUNT 1) and 1995–1997 (HUNT 2) A total of 24,638 participants of the HUNT Study were included in the present study, 579 of whom were diagnosed with Alzheimer disease, mixed Alzheimer/vascular dementia, or vascular dementia Multiple logistic regression analyses were conducted to analyze the association between dementia and blood pressure data from HUNT 1 and HUNT 2 Over the age of 60 years, consistent inverse associations were observed between systolic blood pressure and all-cause dementia, mixed Alzheimer/vascular dementia, and Alzheimer disease, but not with vascular dementia, when adjusting for age, sex, education, and other relevant covariates This was observed for systolic blood pressure in both HUNT 1 and HUNT 2, regardless of antihypertensive medication use There was an adverse association between systolic blood pressure, pulse pressure, and Alzheimer disease in individuals treated with antihypertensive medication under the age of 60 years Our data are in line with those in previous studies demonstrating an inverse association between dementia and systolic blood pressure in individuals over the age of 60 years We cannot exclude a survival effect, however Among middle-aged subjects (<60 years), elevated systolic blood pressure and pulse pressure were associated with eventual Alzheimer disease in individuals who reported using antihypertensive medication

Journal ArticleDOI
TL;DR: A combination of two biomarkers of neurodegeneration is not superior over the single parameters in identifying patients with MCI who are most likely to progress to AD dementia, although there is a gradual increase in the statistical measures across increasing biomarker combinations.
Abstract: The progression of mild cognitive impairment (MCI) to Alzheimer’s disease (AD) dementia can be predicted by cognitive, neuroimaging, and cerebrospinal fluid (CSF) markers. Since most biomarkers reveal complementary information, a combination of biomarkers may increase the predictive power. We investigated which combination of the Mini-Mental State Examination (MMSE), Clinical Dementia Rating (CDR)-sum-of-boxes, the word list delayed free recall from the Consortium to Establish a Registry of Dementia (CERAD) test battery, hippocampal volume (HCV), amyloid-beta1–42 (Aβ42), amyloid-beta1–40 (Aβ40) levels, the ratio of Aβ42/Aβ40, phosphorylated tau, and total tau (t-Tau) levels in the CSF best predicted a short-term conversion from MCI to AD dementia. We used 115 complete datasets from MCI patients of the “Dementia Competence Network”, a German multicenter cohort study with annual follow-up up to 3 years. MCI was broadly defined to include amnestic and nonamnestic syndromes. Variables known to predict progression in MCI patients were selected a priori. Nine individual predictors were compared by receiver operating characteristic (ROC) curve analysis. ROC curves of the five best two-, three-, and four-parameter combinations were analyzed for significant superiority by a bootstrapping wrapper around a support vector machine with linear kernel. The incremental value of combinations was tested for statistical significance by comparing the specificities of the different classifiers at a given sensitivity of 85%. Out of 115 subjects, 28 (24.3%) with MCI progressed to AD dementia within a mean follow-up period of 25.5 months. At baseline, MCI-AD patients were no different from stable MCI in age and gender distribution, but had lower educational attainment. All single biomarkers were significantly different between the two groups at baseline. ROC curves of the individual predictors gave areas under the curve (AUC) between 0.66 and 0.77, and all single predictors were statistically superior to Aβ40. The AUC of the two-parameter combinations ranged from 0.77 to 0.81. The three-parameter combinations ranged from AUC 0.80–0.83, and the four-parameter combination from AUC 0.81–0.82. None of the predictor combinations was significantly superior to the two best single predictors (HCV and t-Tau). When maximizing the AUC differences by fixing sensitivity at 85%, the two- to four-parameter combinations were superior to HCV alone. A combination of two biomarkers of neurodegeneration (e.g., HCV and t-Tau) is not superior over the single parameters in identifying patients with MCI who are most likely to progress to AD dementia, although there is a gradual increase in the statistical measures across increasing biomarker combinations. This may have implications for clinical diagnosis and for selecting subjects for participation in clinical trials.