scispace - formally typeset
Search or ask a question

Showing papers in "BioMed Research International in 2018"


Journal ArticleDOI
TL;DR: This review consolidates the data on the classical and state-of-the-art methods for isolation of EVs, including exosomes, highlighting the advantages and disadvantages of each method.
Abstract: Background. Extracellular vesicles (EVs) play an essential role in the communication between cells and transport of diagnostically significant molecules. A wide diversity of approaches utilizing different biochemical properties of EVs and a lack of accepted protocols make data interpretation very challenging. Scope of Review. This review consolidates the data on the classical and state-of-the-art methods for isolation of EVs, including exosomes, highlighting the advantages and disadvantages of each method. Various characteristics of individual methods, including isolation efficiency, EV yield, properties of isolated EVs, and labor consumption are compared. Major Conclusions. A mixed population of vesicles is obtained in most studies of EVs for all used isolation methods. The properties of an analyzed sample should be taken into account when planning an experiment aimed at studying and using these vesicles. The problem of adequate EVs isolation methods still remains; it might not be possible to develop a universal EV isolation method but the available protocols can be used towards solving particular types of problems. General Significance. With the wide use of EVs for diagnosis and therapy of various diseases the evaluation of existing methods for EV isolation is one of the key problems in modern biology and medicine.

700 citations


Journal ArticleDOI
TL;DR: The present study demonstrated the evidence on synergistic spermatogenic effect of PHF as attributed in ayurveda for the treatment of oligospermia leading to infertility.
Abstract: The therapeutic use of natural herbs is an ancient human civilization act and the numbers of people have reliance on their pharmacological properties and preferred to use the natural herbs. People also use to consume these herbs as supplements to energize, bolster, and eventually enhance sexual ability. Polyherbal formulation (PHF) is one of these herbal amalgams that can be used to treat sexual dysfunction including erectile dysfunction, impotence, ejaculation dysfunction, and hypogonadism. The pilot study was aimed at evaluating the capacity of PHF in enhancing the spermatogenic potential of oligospermic patients. Thirty-six male patients with oligospermia were enrolled and randomized either to treatment (n = 23) with PHF (750 mg/d in three doses for 90 days) or to placebo (n = 13) in the same protocol. The preintervention semen analysis was compared with posttreatment semen analysis. Based on the postintervention semen analysis, patients were advised to undergo either in vitro fertilization (IVF) or intracytoplasmic sperm injection (ICSI) to assess their fertility status. After polyherbal treatment, there was a 256% increase in sperm concentration (9.59 ± 4.37 × 106/mL to 25.61 ± 8.6 × 106/mL; P ≤0.001), 154% increase in semen volume (1.7 ± 0.14 mL to 4.32 ± 0.38 mL; P ≤0.001), and 215% increase in sperm motility (15.43 ± 2.40% to 48.65 ± 5.10%; P ≤ 0.001) on day 90 from baseline. Furthermore, a significant improvement and regulation were also observed in serum hormone levels with PHF treatment as compared to the placebo group. The present study demonstrated the evidence on synergistic spermatogenic effect of PHF as attributed in ayurveda for the treatment of oligospermia leading to infertility.

648 citations


Journal ArticleDOI
TL;DR: A broad review of several Lactobacillus spp, Bifidobacterium spp.
Abstract: Probiotics are microbial strains that are beneficial to health, and their potential has recently led to a significant increase in research interest in their use to modulate the gut microbiota. The animal gut is a complex ecosystem of host cells, microbiota, and available nutrients, and the microbiota prevents several degenerative diseases in humans and animals via immunomodulation. The gut microbiota and its influence on human nutrition, metabolism, physiology, and immunity are addressed, and several probiotic species and strains are discussed to improve the understanding of modulation of gut microbiota. This paper provides a broad review of several Lactobacillus spp., Bifidobacterium spp., and other coliform bacteria as the most promising probiotic species and their role in the prevention of degenerative diseases, such as obesity, diabetes, cancer, cardiovascular diseases, malignancy, liver disease, and inflammatory bowel disease. This review also discusses a recent study of Saccharomyces spp. in which inflammation was prevented by promotion of proinflammatory immune function via the production of short-chain fatty acids. A summary of gut microbiota alteration with future perspectives is also provided.

464 citations


Journal ArticleDOI
TL;DR: In this article, the authors present existing barriers in transplantation (e.g., temperature adjustment and adequate protocol, interest for oxygen addition during preservation, and clear procedure for organ perfusion during machine preservation) and expose the importance of identifying reliable biomarkers to monitor graft quality and predict short and long-term outcomes.
Abstract: Despite the fact that a significant fraction of kidney graft dysfunctions observed after transplantation is due to ischemia-reperfusion injuries, there is still no clear consensus regarding optimal kidney preservation strategy. This stems directly from the fact that as of yet, the mechanisms underlying ischemia-reperfusion injury are poorly defined, and the role of each preservation parameter is not clearly outlined. In the meantime, as donor demography changes, organ quality is decreasing which directly increases the rate of poor outcome. This situation has an impact on clinical guidelines and impedes their possible harmonization in the transplant community, which has to move towards changing organ preservation paradigms: new concepts must emerge and the definition of a new range of adapted preservation method is of paramount importance. This review presents existing barriers in transplantation (e.g., temperature adjustment and adequate protocol, interest for oxygen addition during preservation, and clear procedure for organ perfusion during machine preservation), discusses the development of novel strategies to overcome them, and exposes the importance of identifying reliable biomarkers to monitor graft quality and predict short and long-term outcomes. Finally, perspectives in therapeutic strategies will also be presented, such as those based on stem cells and their derivatives and innovative models on which they would need to be properly tested.

362 citations


Journal ArticleDOI
TL;DR: It has been summarized that a number of species of Lactobacillus and Bifidobacterium exert vital roles in innate immunity by increasing the cytotoxicity of natural killer cells and phagocytosis of macrophages and mediate adaptive immunity by interacting with enterocytes and dendritic, Th1, Th2, and Treg cells.
Abstract: Probiotics confer immunological protection to the host through the regulation, stimulation, and modulation of immune responses. Researchers have shifted their attention to better understand the immunomodulatory effects of probiotics, which have the potential to prevent or alleviate certain pathologies for which proper medical treatment is as yet unavailable. It has been scientifically established that immune cells (T- and B-cells) mediate adaptive immunity and confer immunological protection by developing pathogen-specific memory. However, this review is intended to present the recent studies on immunomodulatory effects of probiotics. In the early section of this review, concepts of probiotics and common probiotic strains are focused on. On a priority basis, the immune system, along with mucosal immunity in the human body, is discussed in this study. It has been summarized that a number of species of Lactobacillus and Bifidobacterium exert vital roles in innate immunity by increasing the cytotoxicity of natural killer cells and phagocytosis of macrophages and mediate adaptive immunity by interacting with enterocytes and dendritic, Th1, Th2, and Treg cells. Finally, immunomodulatory effects of probiotics on proinflammatory and anti-inflammatory cytokine production in different animal models have been extensively reviewed in this paper. Therefore, isolating new probiotic strains and investigating their immunomodulatory effects on cytokine profiles in humans remain a topical issue.

286 citations


Journal ArticleDOI
TL;DR: The main aim of this review is to give an overview of the endocrine, testicular, ovarian, neural, hepatotoxic, and cardiotoxic effects of DEHP on animal models and humans in vitro and in vivo.
Abstract: Di-2-ethylhexyl phthalate (DEHP) is extensively used as a plasticizer in many products, especially medical devices, furniture materials, cosmetics, and personal care products. DEHP is noncovalently bound to plastics, and therefore, it will leach out of these products after repeated use, heating, and/or cleaning of the products. Due to the overuse of DEHP in many products, it enters and pollutes the environment through release from industrial settings and plastic waste disposal sites. DEHP can enter the body through inhalation, ingestion, and dermal contact on a daily basis, which has raised some concerns about its safety and its potential effects on human health. The main aim of this review is to give an overview of the endocrine, testicular, ovarian, neural, hepatotoxic, and cardiotoxic effects of DEHP on animal models and humans in vitro and in vivo.

252 citations


Journal ArticleDOI
TL;DR: The finding that the acidic precursor of CBD (cannabidiolic acid, CBDA) is able to inhibit the migration of breast cancer cells and to downregulate the proto-oncogene c-fos and the cyclooxygenase-2 (COX-2) highlights the possibility that CBDA might act on a common pathway of inflammation and cancer mechanisms, which might be responsible for its anticancer activity.
Abstract: In the last decades, a lot of attention has been paid to the compounds present in medicinal Cannabis sativa L., such as Δ9-tetrahydrocannabinol (Δ9-THC) and cannabidiol (CBD), and their effects on inflammation and cancer-related pain. The National Cancer Institute (NCI) currently recognizes medicinal C. sativa as an effective treatment for providing relief in a number of symptoms associated with cancer, including pain, loss of appetite, nausea and vomiting, and anxiety. Several studies have described CBD as a multitarget molecule, acting as an adaptogen, and as a modulator, in different ways, depending on the type and location of disequilibrium both in the brain and in the body, mainly interacting with specific receptor proteins CB1 and CB2. CBD is present in both medicinal and fibre-type C. sativa plants, but, unlike Δ9-THC, it is completely nonpsychoactive. Fibre-type C. sativa (hemp) differs from medicinal C. sativa, since it contains only few levels of Δ9-THC and high levels of CBD and related nonpsychoactive compounds. In recent years, a number of preclinical researches have been focused on the role of CBD as an anticancer molecule, suggesting CBD (and CBD-like molecules present in the hemp extract) as a possible candidate for future clinical trials. CBD has been found to possess antioxidant activity in many studies, thus suggesting a possible role in the prevention of both neurodegenerative and cardiovascular diseases. In animal models, CBD has been shown to inhibit the progression of several cancer types. Moreover, it has been found that coadministration of CBD and Δ9-THC, followed by radiation therapy, causes an increase of autophagy and apoptosis in cancer cells. In addition, CBD is able to inhibit cell proliferation and to increase apoptosis in different types of cancer models. These activities seem to involve also alternative pathways, such as the interactions with TRPV and GRP55 receptor complexes. Moreover, the finding that the acidic precursor of CBD (cannabidiolic acid, CBDA) is able to inhibit the migration of breast cancer cells and to downregulate the proto-oncogene c-fos and the cyclooxygenase-2 (COX-2) highlights the possibility that CBDA might act on a common pathway of inflammation and cancer mechanisms, which might be responsible for its anticancer activity. In the light of all these findings, in this review we explore the effects and the molecular mechanisms of CBD on inflammation and cancer processes, highlighting also the role of minor cannabinoids and noncannabinoids constituents of Δ9-THC deprived hemp.

231 citations


Journal ArticleDOI
TL;DR: It is suggested that PknG may contribute to the pathogenesis of MAP by phosphorylating macrophage signalling and/or adaptor molecules as observed with other pathogenic mycobacterial species.
Abstract: To establish infection, pathogens secrete virulence factors, such as protein kinases and phosphatases, to modulate the signal transduction pathways used by host cells to initiate immune response. The protein MAP3893c is annotated in the genome sequence of Mycobacterium avium subspecies paratuberculosis (MAP), the causative agent of Johne’s disease, as the serine/threonine protein kinase G (PknG). In this work, we report that PknG is a functional kinase that is secreted within macrophages at early stages of infection. The antigen is able to induce an immune response from cattle exposed to MAP in the form of interferon gamma production after stimulation of whole blood with PknG. These findings suggest that PknG may contribute to the pathogenesis of MAP by phosphorylating macrophage signalling and/or adaptor molecules as observed with other pathogenic mycobacterial species.

228 citations


Journal ArticleDOI
TL;DR: This review emphasizes that the Lb.
Abstract: Lactobacillus plantarum (widespread member of the genus Lactobacillus) is one of the most studied species extensively used in food industry as probiotic microorganism and/or microbial starter. The exploitation of Lb. plantarum strains with their long history in food fermentation forms an emerging field and design of added-value foods. Lb. plantarum strains were also used to produce new functional (traditional/novel) foods and beverages with improved nutritional and technological features. Lb. plantarum strains were identified from many traditional foods and characterized for their systematics and molecular taxonomy, enzyme systems (α-amylase, esterase, lipase, α-glucosidase, β-glucosidase, enolase, phosphoketolase, lactase dehydrogenase, etc.), and bioactive compounds (bacteriocin, dipeptides, and other preservative compounds). This review emphasizes that the Lb. plantarum strains with their probiotic properties can have great effects against harmful microflora (foodborne pathogens) to increase safety and shelf-life of fermented foods.

225 citations


Journal ArticleDOI
TL;DR: Investigating the acute effect of intravenous hydroxyethyl starch on retrobulbar hemodynamics in patients with nonarteritic anterior ischemic optic neuropathy found increased blood flow in the arteries supplying the optic nerve head may lead to a better perfusion in NAION patients.
Abstract: Purpose Ischemic ocular disorders may be treated by hypervolemic hemodilution. The presumed therapeutic benefit is based on a volume effect and improved rheological factors. The aim was to investigate the acute effect of intravenous hydroxyethyl starch on retrobulbar hemodynamics in patients with nonarteritic anterior ischemic optic neuropathy (NAION). Methods 24 patients with acute NAION were included. Retrobulbar hemodynamics were measured using color Doppler imaging before and 15 min after intravenous infusion of 250 cc 10% hydroxyethyl starch (HES). Peak systolic velocity (PSV), end diastolic velocity (EDV), and Pourcelot's resistive index (RI) were measured in the ophthalmic artery (OA), central retinal artery (CRA), and short posterior ciliary arteries (PCAs). Results After infusion of HES blood flow velocities significantly increased in the CRA (PSV from 7.53 ± 2.33 to 8.32 ± 2.51 (p < 0.001); EDV from 2.16 ± 0.56 to 2.34 ± 0.55 (p < 0.05)) and in the PCAs (PSV from 7.18 ± 1.62 to 7.56 ± 1.55 (p < 0.01); EDV from 2.48 ± 0.55 to 2.66 ± 0.6 cm/sec (p < 0.01)). The RI of all retrobulbar vessels remained unaffected. Blood pressure and heart rate remained unchanged. Conclusions Hypervolemic hemodilution has an acute effect on blood flow velocities in the CRA and PCAs in NAION patients. Increased blood flow in the arteries supplying the optic nerve head may lead to a better perfusion in NAION patients. This trial is registered with DRKS00012603.

211 citations



Journal ArticleDOI
TL;DR: Different multi-OMICS approaches involving the interrogation of the cancer cells/tissues in multiple dimensions have the potential to uncover the intricate molecular mechanism underlying different phenotypic manifestations of cancer hallmarks such as metastasis and angiogenesis.
Abstract: The acquisition of cancer hallmarks requires molecular alterations at multiple levels including genome, epigenome, transcriptome, proteome, and metabolome. In the past decade, numerous attempts have been made to untangle the molecular mechanisms of carcinogenesis involving single OMICS approaches such as scanning the genome for cancer-specific mutations and identifying altered epigenetic-landscapes within cancer cells or by exploring the differential expression of mRNA and protein through transcriptomics and proteomics techniques, respectively. While these single-level OMICS approaches have contributed towards the identification of cancer-specific mutations, epigenetic alterations, and molecular subtyping of tumors based on gene/protein-expression, they lack the resolving-power to establish the casual relationship between molecular signatures and the phenotypic manifestation of cancer hallmarks. In contrast, the multi-OMICS approaches involving the interrogation of the cancer cells/tissues in multiple dimensions have the potential to uncover the intricate molecular mechanism underlying different phenotypic manifestations of cancer hallmarks such as metastasis and angiogenesis. Moreover, multi-OMICS approaches can be used to dissect the cellular response to chemo- or immunotherapy as well as discover molecular candidates with diagnostic/prognostic value. In this review, we focused on the applications of different multi-OMICS approaches in the field of cancer research and discussed how these approaches are shaping the field of personalized oncomedicine. We have highlighted pioneering studies from “The Cancer Genome Atlas (TCGA)” consortium encompassing integrated OMICS analysis of over 11,000 tumors from 33 most prevalent forms of cancer. Accumulation of huge cancer-specific multi-OMICS data in repositories like TCGA provides a unique opportunity for the systems biology approach to tackle the complexity of cancer cells through the unification of experimental data and computational/mathematical models. In future, systems biology based approach is likely to predict the phenotypic changes of cancer cells upon chemo-/immunotherapy treatment. This review is sought to encourage investigators to bring these different approaches together for interrogating cancer at molecular, cellular, and systems levels.

Journal ArticleDOI
TL;DR: The authors reviewed the current literature to define the most appropriate features of exercise for increasing bone density in osteoporotic patients and found weight-bearing aerobic exercises alone did not appear to improve bone mass; however it is able to limit its progressive loss.
Abstract: Physical exercise is considered an effective means to stimulate bone osteogenesis in osteoporotic patients. The authors reviewed the current literature to define the most appropriate features of exercise for increasing bone density in osteoporotic patients. Two types emerged: (1) weight-bearing aerobic exercises, i.e., walking, stair climbing, jogging, and Tai Chi. Walking alone did not appear to improve bone mass; however it is able to limit its progressive loss. In fact, in order for the weight-bearing exercises to be effective, they must reach the mechanical intensity useful to determine an important ground reaction force. (2) Strength and resistance exercises: these are carried out with loading (lifting weights) or without (swimming, cycling). For this type of exercise to be effective a joint reaction force superior to common daily activity with sensitive muscle strengthening must be determined. These exercises appear extremely site-specific, able to increase muscle mass and BMD only in the stimulated body regions. Other suggested protocols are multicomponent exercises and whole body vibration. Multicomponent exercises consist of a combination of different methods (aerobics, strengthening, progressive resistance, balancing, and dancing) aimed at increasing or preserving bone mass. These exercises seem particularly indicated in deteriorating elderly patients, often not able to perform exercises of pure reinforcement. However, for these protocols to be effective they must always contain a proportion of strengthening and resistance exercises. Given the variability of the protocols and outcome measures, the results of these methods are difficult to quantify. Training with whole body vibration (WBV): these exercises are performed with dedicated devices, and while it seems they have effect on enhancing muscle strength, controversial findings on improvement of BMD were reported. WBV seems to provide good results, especially in improving balance and reducing the risk of falling; in this, WBV appears more efficient than simply walking. Nevertheless, contraindications typical of senility should be taken into account.

Journal ArticleDOI
TL;DR: High NLR was associated with CAD, ACS, stroke, and composite cardiovascular events, and therefore, NLR may be a useful CVD biomarker.
Abstract: Objective. This systematic review aimed to measure the association between neutrophil lymphocyte ratio (NLR) and cardiovascular disease (CVD) risk. Methods. Relevant studies were identified from Medline and Scopus databases. Observational studies with NLR as a study factor were eligible for review. The outcomes of interest were any type of CVD including acute coronary syndrome, coronary artery disease, stroke, or a composite of these cardiovascular events. Mean differences in NLR between CVD and non-CVD patients were pooled using unstandardized mean difference (USMD). Odds ratios of CVD between high and low NLR groups were pooled using a random effects model. Results. Thirty-eight studies (n=76,002) were included. High NLR was significantly associated with the risks of CAD, ACS, stroke, and composite cardiovascular events with pooled ORs of 1.62 (95% CI: 1.38-1.91), 1.64 (95% CI: 1.30, 2.05), 2.36 (95% CI: 1.44, 2.89), and 3.86 (95% CI: 1.73, 8.64), respectively. In addition, mean NLRs in CAD, ACS, and stroke patients were significantly higher than in control groups. Conclusion. High NLR was associated with CAD, ACS, stroke, and composite cardiovascular events. Therefore, NLR may be a useful CVD biomarker.

Journal ArticleDOI
TL;DR: PEEK can be successfully used as an appropriate biomaterial to reconstruct the surgical defects in a “biomimetic” design using FFF 3D printing.
Abstract: Additive manufacturing (AM) is rapidly gaining acceptance in the healthcare sector. Three-dimensional (3D) virtual surgical planning, fabrication of anatomical models, and patient-specific implants (PSI) are well-established processes in the surgical fields. Polyetheretherketone (PEEK) has been used, mainly in the reconstructive surgeries as a reliable alternative to other alloplastic materials for the fabrication of PSI. Recently, it has become possible to fabricate PEEK PSI with Fused Filament Fabrication (FFF) technology. 3D printing of PEEK using FFF allows construction of almost any complex design geometry, which cannot be manufactured using other technologies. In this study, we fabricated various PEEK PSI by FFF 3D printer in an effort to check the feasibility of manufacturing PEEK with 3D printing. Based on these preliminary results, PEEK can be successfully used as an appropriate biomaterial to reconstruct the surgical defects in a "biomimetic" design.

Journal ArticleDOI
TL;DR: Consumption of green tea has been shown to distribute these compounds and/or their metabolites throughout the body, which allows for not only the possibility of treatment of infections but also the prevention of infections.
Abstract: Green tea is one of the most popular drinks consumed worldwide. Produced mainly in Asian countries from the leaves of the Camellia sinensis plant, the potential health benefits have been widely studied. Recently, researchers have studied the ability of green tea to eradicate infectious agents and the ability to actually prevent infections. The important components in green tea that show antimicrobial properties are the catechins. The four main catechins that occur in green tea are (-)-epicatechin (EC), (-)-epicatechin-3-gallate (ECG), (-)-epigallocatechin (EGC), and (-)-epigallocatechin-3-gallate (EGCG). Of these catechins, EGCG and EGC are found in the highest amounts in green tea and have been the subject of most of the studies. These catechins have been shown to demonstrate a variety of antimicrobial properties, both to organisms affected and in mechanisms used. Consumption of green tea has been shown to distribute these compounds and/or their metabolites throughout the body, which allows for not only the possibility of treatment of infections but also the prevention of infections.

Journal ArticleDOI
TL;DR: This review is to organize all the current updated literature describing genomic features, organization, and mechanism of resistance and mode of dissemination of all known ESBLs.
Abstract: The β-lactams-a large class of diverse compounds-due to their excellent safety profile and broad antimicrobial spectrum are considered to be the most widely used therapeutic class of antibacterials prescribed in human and veterinary clinical practices. This, unfortunately, has also given rise to a continuous increased resistance globally in health care settings as well as in the community due to their permanent selective force driving diversification of the resistance mechanism. Resistance against β-lactams is increasing rapidly as novel β-lactamases, enzymes that degrade β-lactams, are being discovered each day such as recent emergence of extended spectrum β-lactamases (ESBL) that have the ability to inactivate most of the cephalosporins. The complexity and diversity of ESBL are increasing so rapidly that more than 170 variants have thus far been described for only a single genotype, the blaCTX-M -encoding ESBL. This review is to organize all the current updated literature describing genomic features, organization, and mechanism of resistance and mode of dissemination of all known ESBLs.

Journal ArticleDOI
TL;DR: A comprehensive update on the pathophysiological role of eosinophils in host defence, inflammation, and cancer is provided and potential clinical implications are discussed in light of recent therapeutic advances.
Abstract: Despite being the second least represented granulocyte subpopulation in the circulating blood, eosinophils are receiving a growing interest from the scientific community, due to their complex pathophysiological role in a broad range of local and systemic inflammatory diseases as well as in cancer and thrombosis. Eosinophils are crucial for the control of parasitic infections, but increasing evidence suggests that they are also involved in vital defensive tasks against bacterial and viral pathogens including HIV. On the other side of the coin, eosinophil potential to provide a strong defensive response against invading microbes through the release of a large array of compounds can prove toxic to the host tissues and dysregulate haemostasis. Increasing knowledge of eosinophil biological behaviour is leading to major changes in established paradigms for the classification and diagnosis of several allergic and autoimmune diseases and has paved the way to a “golden age” of eosinophil-targeted agents. In this review, we provide a comprehensive update on the pathophysiological role of eosinophils in host defence, inflammation, and cancer and discuss potential clinical implications in light of recent therapeutic advances.

Journal ArticleDOI
TL;DR: This paper summarized the research which focuses on the ultrasound CAD system utilizing machine learning technology in recent years and introduced the major feature and the classifier employed by the traditional ultrasound CAD and the deep learning ultrasound CAD.
Abstract: The ultrasound imaging is one of the most common schemes to detect diseases in the clinical practice. There are many advantages of ultrasound imaging such as safety, convenience, and low cost. However, reading ultrasound imaging is not easy. To support the diagnosis of clinicians and reduce the load of doctors, many ultrasound computer-aided diagnosis (CAD) systems are proposed. In recent years, the success of deep learning in the image classification and segmentation led to more and more scholars realizing the potential of performance improvement brought by utilizing the deep learning in the ultrasound CAD system. This paper summarized the research which focuses on the ultrasound CAD system utilizing machine learning technology in recent years. This study divided the ultrasound CAD system into two categories. One is the traditional ultrasound CAD system which employed the manmade feature and the other is the deep learning ultrasound CAD system. The major feature and the classifier employed by the traditional ultrasound CAD system are introduced. As for the deep learning ultrasound CAD, newest applications are summarized. This paper will be useful for researchers who focus on the ultrasound CAD system.

Journal ArticleDOI
TL;DR: This review summarized and compared the available traditional and novel methods for the extraction of exosomes from human samples and considered their advantages and disadvantages for use in clinical laboratories and point-of-care settings.
Abstract: Exosomes are discrete populations of small (40-200 nm in diameter) membranous vesicles that are released into the extracellular space by most cell types, eventually accumulating in the circulation. As molecular messengers, exosomes exert a broad array of vital physiologic functions by transporting information between different cell types. Because of these functional properties, they may have potential as biomarker sources for prognostic and diagnostic disease. Recent research has found that exosomes have potential to be utilized as drug delivery agents for therapeutic targets. However, basic researches on exosomes and researches on their therapeutic potential both require the existence of effective and rapid methods for their separation from human samples. In the current absence of a standardized method, there are several methods available for the separation of exosomes, but very few studies have previously compared the efficiency and suitability of these different methods. This review summarized and compared the available traditional and novel methods for the extraction of exosomes from human samples and considered their advantages and disadvantages for use in clinical laboratories and point-of-care settings.

Journal ArticleDOI
TL;DR: A Convolutional Neural Network, a Long-Short-Term-Memory (LSTM), and a combination of CNN and LSTM are proposed for breast cancer image classification using novel DNN techniques guided by structural and statistical information derived from the images.
Abstract: Breast Cancer is a serious threat and one of the largest causes of death of women throughout the world. The identification of cancer largely depends on digital biomedical photography analysis such as histopathological images by doctors and physicians. Analyzing histopathological images is a nontrivial task, and decisions from investigation of these kinds of images always require specialised knowledge. However, Computer Aided Diagnosis (CAD) techniques can help the doctor make more reliable decisions. The state-of-the-art Deep Neural Network (DNN) has been recently introduced for biomedical image analysis. Normally each image contains structural and statistical information. This paper classifies a set of biomedical breast cancer images (BreakHis dataset) using novel DNN techniques guided by structural and statistical information derived from the images. Specifically a Convolutional Neural Network (CNN), a Long-Short-Term-Memory (LSTM), and a combination of CNN and LSTM are proposed for breast cancer image classification. Softmax and Support Vector Machine (SVM) layers have been used for the decision-making stage after extracting features utilising the proposed novel DNN models. In this experiment the best Accuracy value of 91.00% is achieved on the 200x dataset, the best Precision value 96.00% is achieved on the 40x dataset, and the best F-Measure value is achieved on both the 40x and 100x datasets.

Journal ArticleDOI
TL;DR: Phytotoxicity and microtoxicity tests confirmed that degradation metabolites were less toxic than original dye.
Abstract: Congo red is one of the best known and used azo dyes which has two azo bonds (-N=N-) chromophore in its molecular structure. Its structural stability makes it highly toxic and resistant to biodegradation. The objective of this study was to assess the congo red biodegradation and detoxification by Aspergillus niger. The effects of pH, initial dye concentration, temperature, and shaking speed on the decolorization rate and enzymes production were studied. The maximum decolorization was correlated with lignin peroxidase and manganese peroxidase production. Above 97% were obtained when 2 g mycelia were incubated at pH 5, in presence of 200 mg/L of dye during 6 days at 28°C and under 120 to 150 rpm shaking speed. The degraded metabolites were characterized by using LC-MS/MS analyses and the biodegradation mechanism was also studied. Congo red bioconversion formed degradation metabolites mainly by peroxidases activities, i.e., the sodium naphthalene sulfonate (m/z = 227) and the cycloheptadienylium (m/z = 91). Phytotoxicity and microtoxicity tests confirmed that degradation metabolites were less toxic than original dye.

Journal ArticleDOI
TL;DR: The Portuguese Severe Asthma Registry (RAG) is a national web-based disease registry of severe asthma patients that allows prospective clinical data collection, promotes standardized care and collaborative clinical research, and may contribute to inform evidence-based healthcare policies for severe asthma.
Abstract: Copyright © 2018 Ana Sa-Sousa et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Journal ArticleDOI
TL;DR: Amino acids improve the functions of intestinal barrier and expressions of anti-inflammatory cytokines and tight junction proteins but decrease oxidative stress and the apoptosis of enterocytes as well as the expressions of pro inflammatory cytokines in the intestinal inflammation.
Abstract: Intestine is always exposed to external environment and intestinal microorganism; thus it is more sensitive to dysfunction and dysbiosis, leading to intestinal inflammation, such as inflammatory bowel disease (IBD), irritable bowel syndrome (IBS), and diarrhea. An increasing number of studies indicate that dietary amino acids play significant roles in preventing and treating intestinal inflammation. The review aims to summarize the functions and signaling mechanisms of amino acids in intestinal inflammation. Amino acids, including essential amino acids (EAAs), conditionally essential amino acids (CEAAs), and nonessential amino acids (NEAAs), improve the functions of intestinal barrier and expressions of anti-inflammatory cytokines and tight junction proteins but decrease oxidative stress and the apoptosis of enterocytes as well as the expressions of proinflammatory cytokines in the intestinal inflammation. The functions of amino acids are associated with various signaling pathways, including mechanistic target of rapamycin (mTOR), inducible nitric oxide synthase (iNOS), calcium-sensing receptor (CaSR), nuclear factor-kappa-B (NF-κB), mitogen-activated protein kinase (MAPK), nuclear erythroid-related factor 2 (Nrf2), general controlled nonrepressed kinase 2 (GCN2), and angiotensin-converting enzyme 2 (ACE2).

Journal ArticleDOI
TL;DR: This review is to ensure that clinicians understand the current seriousness of antibiotic-resistant E. coli, the mechanisms by which resistance is selected for, and methods that can be used to prevent antibiotic resistance.
Abstract: Urinary tract infections (UTIs) caused by Escherichia coli (E. coli) are the most common types of infections in women. The antibiotic resistance of E. coli is increasing rapidly, causing physicians to hesitate when selecting oral antibiotics. In this review, our objective is to ensure that clinicians understand the current seriousness of antibiotic-resistant E. coli, the mechanisms by which resistance is selected for, and methods that can be used to prevent antibiotic resistance.

Journal ArticleDOI
TL;DR: This article provides a comprehensive review of management of hypertriglyceridemia induced acute pancreatitis with a focus on plasmapheresis, insulin, heparin infusion, and hemofiltration.
Abstract: Hypertriglyceridemia is an uncommon but a well-established etiology of acute pancreatitis leading to significant morbidity and mortality The risk and severity of acute pancreatitis increase with increasing levels of serum triglycerides It is crucial to identify hypertriglyceridemia as the cause of pancreatitis and initiate appropriate treatment plan Initial supportive treatment is similar to management of other causes of acute pancreatitis with additional specific therapies tailored to lower serum triglycerides levels This includes plasmapheresis, insulin, heparin infusion, and hemofiltration After the acute episode, diet and lifestyle modifications along with hypolipidemic drugs should be initiated to prevent further episodes Currently, there is paucity of studies directly comparing different modalities This article provides a comprehensive review of management of hypertriglyceridemia induced acute pancreatitis We conclude by summarizing our treatment approach to manage hypertriglyceridemia induced acute pancreatitis

Journal ArticleDOI
TL;DR: The main clinical manifestations were fever, fatigue, arthralgia, and muscle pain, and the common complications of brucellosis were hepatitis, followed by osteoarthritis, respiratory diseases, cardiovascular diseases, central nervous system dysfunction, hemophagocytic syndrome, and orchitis/epididymitis in male.
Abstract: Background. Brucellosis has a wide spectrum of clinical manifestations and it may last several days or even several years; however, it is often misdiagnosed and therefore may cause inadequate therapy and prolonged illness. Previous studies about meta-analysis of manifestations of brucellosis reported in English lacked the data published in Chinese, which did not provide details about the contact history, laboratory tests, and misdiagnosis. We undertake a meta-analysis of clinical manifestations of human brucellosis in China to identify those gaps in the literature. We have searched published articles in electronic databases up to December 2016 identified as relating to clinical features of human brucellosis in China. 68 studies were included in the analysis. The main clinical manifestations were fever, fatigue, arthralgia, and muscle pain (87%, 63%, 62%, and 56%, resp.). There are significant differences between adults and children. Rash, respiratory and cardiac complications, and orchitis/epididymitis were more prevalent in children patients. The common complications of brucellosis were hepatitis, followed by osteoarthritis, respiratory diseases, cardiovascular diseases, central nervous system dysfunction, hemophagocytic syndrome, and orchitis/epididymitis in male. In the nonpastoral areas, brucellosis has a high ratio of misdiagnosis. Our analysis provides further evidence for the accurate diagnosis, particularly in assessing severe, debilitating sequelae of this infection.

Journal ArticleDOI
TL;DR: In light of extensive new scientific evidence, should the possibility of changing the current FAO/WHO requirements for the definition of probiotic bacteria be considered?
Abstract: One of the most promising areas of development in the human nutritional field over the last two decades has been the use of probiotics and recognition of their role in human health and disease. Lactic acid-producing bacteria are the most commonly used probiotics in foods. It is well known that probiotics have a number of beneficial health effects in humans and animals. They play an important role in the protection of the host against harmful microorganisms and also strengthen the immune system. Some probiotics have also been found to improve feed digestibility and reduce metabolic disorders. They must be safe, acid and bile tolerant, and able to adhere and colonize the intestinal tract. The means by which probiotic bacteria elicit their health effects are not understood fully, but may include competitive exclusion of enteric pathogens, neutralization of dietary carcinogens, production of antimicrobial metabolites, and modulation of mucosal and systemic immune function. So far, lactic acid bacteria isolated only from the human gastrointestinal tract are recommended by the Food and Agriculture Organization (FAO) and World Health Organization (WHO) for use as probiotics by humans. However, more and more studies suggest that strains considered to be probiotics could be isolated from fermented products of animal origin, as well as from non-dairy fermented products. Traditional fermented products are a rich source of microorganisms, some of which may exhibit probiotic properties. They conform to the FAO/WHO recommendation, with one exception; they have not been isolated from human gastrointestinal tract. In light of extensive new scientific evidence, should the possibility of changing the current FAO/WHO requirements for the definition of probiotic bacteria be considered?

Journal ArticleDOI
TL;DR: The present paper is aimed at giving a concise insight into the complex characteristics of cisplatin rodent model and heterogeneity of cisPlatin dosage regimens as well as outlining factors that can severely influence the outcome of the model and the study.
Abstract: Cisplatin is an antitumor drug used in the treatment of a wide variety of malignancies. However, its primary dose-limiting side effect is kidney injury, which is a major clinical concern. To help understand mechanisms involved in the development of kidney injury, cisplatin rodent model has been developed. Given the complex pathogenesis of kidney injury, which involves both local events in the kidney and interconnected and interdependent systemic effects in the body, cisplatin rodent model is indispensable in the investigation of underlying mechanisms and potential treatment strategies of both acute and chronic kidney injury. Cisplatin rodent model is well appreciated and widely used model due to its simplicity. It has many similarities to human cisplatin nephrotoxicity, which are mentioned in the paper. In spite of its simplicity and wide applicability, there are also traps that need to be taken into account when using cisplatin model. The present paper is aimed at giving a concise insight into the complex characteristics of cisplatin rodent model and heterogeneity of cisplatin dosage regimens as well as outlining factors that can severely influence the outcome of the model and the study. Challenges for future research are also mentioned.

Journal ArticleDOI
TL;DR: A comprehensive overview over the epidemiology of muscle tissue loss is given, current strategies in clinical treatment are highlighted, and novel methods for muscle regeneration and challenges for their future clinical translation are discussed.
Abstract: Skeletal muscle has the capacity of regeneration after injury. However, for large volumes of muscle loss, this regeneration needs interventional support. Consequently, muscle injury provides an ongoing reconstructive and regenerative challenge in clinical work. To promote muscle repair and regeneration, different strategies have been developed within the last century and especially during the last few decades, including surgical techniques, physical therapy, biomaterials, and muscular tissue engineering as well as cell therapy. Still, there is a great need to develop new methods and materials, which promote skeletal muscle repair and functional regeneration. In this review, we give a comprehensive overview over the epidemiology of muscle tissue loss, highlight current strategies in clinical treatment, and discuss novel methods for muscle regeneration and challenges for their future clinical translation.