scispace - formally typeset
Search or ask a question

Showing papers in "Glycobiology in 2020"


Journal ArticleDOI
TL;DR: The glycosylation mapping on spike protein subunits S1 and S2 expressed on human cells through high-resolution mass spectrometry is reported and the elucidation of the glycan repertoire on the spike protein provides insights into the viral binding studies and propels research toward the development of a suitable vaccine candidate.
Abstract: The current emergence of the novel coronavirus pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) demands the development of new therapeutic strategies to prevent rapid progress of mortalities. The coronavirus spike (S) protein, which facilitates viral attachment, entry and membrane fusion is heavily glycosylated and plays a critical role in the elicitation of the host immune response. The spike protein is comprised of two protein subunits (S1 and S2), which together possess 22 potential N-glycosylation sites. Herein, we report the glycosylation mapping on spike protein subunits S1 and S2 expressed on human cells through high-resolution mass spectrometry. We have characterized the quantitative N-glycosylation profile on spike protein and interestingly, observed unexpected O-glycosylation modifications on the receptor-binding domain of spike protein subunit S1. Even though O-glycosylation has been predicted on the spike protein of SARS-CoV-2, this is the first report of experimental data for both the site of O-glycosylation and identity of the O-glycans attached on the subunit S1. Our data on the N- and O-glycosylation are strengthened by extensive manual interpretation of each glycopeptide spectra in addition to using bioinformatics tools to confirm the complexity of glycosylation in the spike protein. The elucidation of the glycan repertoire on the spike protein provides insights into the viral binding studies and more importantly, propels research toward the development of a suitable vaccine candidate.

376 citations


Posted ContentDOI
TL;DR: It is shown that SARS-CoV-2 spike protein interacts with cell surface heparan sulfate and angiotensin converting enzyme 2 (ACE2) through its Receptor Binding Domain and may represent new therapeutic opportunities for exogenous heparin.
Abstract: We show that SARS-CoV-2 spike protein interacts with cell surface heparan sulfate and angiotensin converting enzyme 2 (ACE2) through its Receptor Binding Domain. Docking studies suggest a putative heparin/heparan sulfate-binding site adjacent to the domain that binds to ACE2. In vitro, binding of ACE2 and heparin to spike protein ectodomains occurs independently and a ternary complex can be generated using heparin as a template. Contrary to studies with purified components, spike protein binding to heparan sulfate and ACE2 on cells occurs codependently. Unfractionated heparin, non-anticoagulant heparin, treatment with heparin lyases, and purified lung heparan sulfate potently block spike protein binding and infection by spike protein-pseudotyped virus and SARS-CoV-2 virus. These findings support a model for SARS-CoV-2 infection in which viral attachment and infection involves formation of a complex between heparan sulfate and ACE2. Manipulation of heparan sulfate or inhibition of viral adhesion by exogenous heparin may represent new therapeutic opportunities. ### Competing Interest Statement J.D.E. is a co-founder of TEGA Therapeutics. J.D.E. and The Regents of the University of California have licensed a University invention to and have an equity interest in TEGA Therapeutics. The terms of this arrangement have been reviewed and approved by the University of California, San Diego in accordance with its conflict of interest policies. C.A.G and B.E.T are employees of TEGA Therapeutics.

270 citations



Journal ArticleDOI
TL;DR: A comprehensive review of the IgG glycosylation field and the impact glycans have on IgG function is provided, beginning with the earliest findings over 40 years ago, in order to provide a robust foundation for moving forward.
Abstract: IgG glycosylation is currently at the forefront of both immunology and glycobiology, likely due in part to the widespread and growing use of antibodies as drugs. For over four decades, it has been recognized that the conserved N-linked glycan on asparagine 297 found within the second Ig domain of the heavy chain (CH2) that helps to comprise Fc region of IgG plays a special role in IgG structure and function. Changes in galactosylation, fucosylation and sialylation are now well-established factors, which drive differential IgG function, ranging from inhibitory/anti-inflammatory to activating complement and promoting antibody-dependent cellular cytotoxicity. Thus, if we are to truly understand how to design and deploy antibody-based drugs with maximal efficacy and evaluate proper vaccine responses from a protective and functional perspective, a deep understanding of IgG glycosylation is essential. This article is intended to provide a comprehensive review of the IgG glycosylation field and the impact glycans have on IgG function, beginning with the earliest findings over 40 years ago, in order to provide a robust foundation for moving forward.

98 citations


Journal ArticleDOI
TL;DR: This work provides critical new insights into the functional roles for antibody glycosylation as well as lays the foundation for leveraging antibody gly cosylation to drive prevention or control across diseases.
Abstract: Abundant evidence points to a critical role for antibodies in protection and pathology across infectious diseases. While the antibody variable domain facilitates antibody binding and the blockade of infection, the constant domain (Fc) mediates cross talk with the innate immune system. The biological activity of the Fc region is controlled genetically via class switch recombination, resulting in the selection of distinct antibody isotypes and subclasses. However, a second modification is made to all antibodies, via post-translational changes in antibody glycosylation. Studies from autoimmunity and oncology have established the role of immunoglobulin G (IgG) Fc glycosylation as a key regulator of humoral immune activity. However, a growing body of literature, exploring IgG Fc glycosylation through the lens of infectious diseases, points to the role of inflammation in shaping Fc-glycan profiles, the remarkable immune plasticity in antibody glycosylation across pathogen-exposed populations, the canonical and noncanonical functions of glycans and the existence of antigen-specific control over antibody Fc glycosylation. Ultimately, this work provides critical new insights into the functional roles for antibody glycosylation as well as lays the foundation for leveraging antibody glycosylation to drive prevention or control across diseases.

83 citations


Journal ArticleDOI
TL;DR: This review describes recent advances in MS methods, separation techniques and orthogonal approaches for the characterization of immunoglobulin glycosylation in different settings and puts emphasis on the current status and expected developments of antibody glyCosylation analysis in biomedical, biopharmaceutical and clinical research.
Abstract: Protein N- and O-glycosylation are well known co- and post-translational modifications of immunoglobulins. Antibody glycosylation on the Fab and Fc portion is known to influence antigen binding and effector functions, respectively. To study associations between antibody glycosylation profiles and (patho) physiological states as well as antibody functionality, advanced technologies and methods are required. In-depth structural characterization of antibody glycosylation usually relies on the separation and tandem mass spectrometric (MS) analysis of released glycans. Protein- and site-specific information, on the other hand, may be obtained by the MS analysis of glycopeptides. With the development of high-resolution mass spectrometers, antibody glycosylation analysis at the intact or middle-up level has gained more interest, providing an integrated view of different post-translational modifications (including glycosylation). Alongside the in-depth methods, there is also great interest in robust, high-throughput techniques for routine glycosylation profiling in biopharma and clinical laboratories. With an emphasis on IgG Fc glycosylation, several highly robust separation-based techniques are employed for this purpose. In this review, we describe recent advances in MS methods, separation techniques and orthogonal approaches for the characterization of immunoglobulin glycosylation in different settings. We put emphasis on the current status and expected developments of antibody glycosylation analysis in biomedical, biopharmaceutical and clinical research.

72 citations


Journal ArticleDOI
TL;DR: This study analyzed recombinant severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein secreted from BTI-Tn-5B1–4 insect cells by trypsin and chymotrypsin digestion followed by mass spectrometry analysis, and proposed a snake-catching model for predicted paratopes.
Abstract: Coronaviruses hijack human enzymes to assemble the sugar coat on their spike glycoproteins. The mechanisms by which human antibodies may recognize the antigenic viral peptide epitopes hidden by the sugar coat are unknown. Glycosylation by insect cells differs from the native form produced in human cells, but insect cell-derived influenza vaccines have been approved by the US Food and Drug Administration. In this study, we analyzed recombinant severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein secreted from BTI-Tn-5B1-4 insect cells, by trypsin and chymotrypsin digestion followed by mass spectrometry analysis. We acquired tandem mass spectrometry (MS/MS) spectrums for glycopeptides of all 22 predicted N-glycosylated sites. We further analyzed the surface accessibility of spike proteins according to cryogenic electron microscopy and homolog-modeled structures and available antibodies that bind to SARS-CoV-1. All 22 N-glycosylated sites of SARS-CoV-2 are modified by high-mannose N-glycans. MS/MS fragmentation clearly established the glycopeptide identities. Electron densities of glycans cover most of the spike receptor-binding domain of SARS-CoV-2, except YQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQ, similar to a region FSPDGKPCTPPALNCYWPLNDYGFYTTTGIGYQ in SARS-CoV-1. Other surface-exposed domains include those located on central helix, connecting region, heptad repeats and N-terminal domain. Because the majority of antibody paratopes bind to the peptide portion with or without sugar modification, we propose a snake-catching model for predicted paratopes: a minimal length of peptide is first clamped by a paratope and sugar modifications close to the peptide either strengthen or do not hinder the binding.

56 citations


Journal ArticleDOI
TL;DR: This work utilized glycomics-informed glycoproteomics to characterize site-specific microheterogeneity of glycosylation for a recombinant trimer Spike mimetic immunogen and for a soluble version of human ACE2, and highlights roles for glycans in sterically masking polypeptide epitopes and directly modulating Spike-ACE2 interactions.
Abstract: SARS-CoV-2 betacoronavirus uses its highly glycosylated trimeric Spike protein to bind to the cell surface receptor ACE2 glycoprotein and facilitate host cell entry We utilized glycomics-informed glycoproteomics to characterize sitespecific microheterogeneity of glycosylation for a recom-binant trimer Spike mimetic immunogen and for a soluble version of human ACE2 We combined this information with bioinformatic analyses of natural variants and with existing 3D-structures of both glycoproteins to generate molecular dynamics simulations of each glycoprotein alone and interacting with one another Our results highlight roles for glycans in sterically masking polypeptide epitopes and directly modulating Spike-ACE2 interactions Furthermore, our results illustrate the impact of viral evolution and divergence on Spike glycosylation, as well as the influence of natural variants on ACE2 receptor glycosylation Taken together, these data can facilitate immunogen design to achieve antibody neutralization and inform therapeutic strategies to inhibit viral infection

39 citations


Journal ArticleDOI
TL;DR: An overview of the strategies evolved by gut commensal bacteria to access this rich source of the nutrient with a focus on the GHs involved in mucin degradation is provided.
Abstract: The gut microbiota plays a major role in human health and an alteration in gut microbiota structure and function has been implicated in several diseases. In the colon, mucus covering the epithelium is critical to maintain a homeostatic relationship with the gut microbiota by harboring a microbial community at safe distance from the epithelium surface. The mucin glycans composing the mucus layer provide binding sites and a sustainable source of nutrients to the bacteria inhabiting the mucus niche. Access to these glycan chains requires a complement of glycoside hydrolases (GHs) produced by bacteria across the phyla constituting the human gut microbiota. Due to the increased recognition of the role of mucus-associated microbes in human health, how commensal bacteria breakdown and utilize host mucin glycans has become of increased interest and is reviewed here. This short review provides an overview of the strategies evolved by gut commensal bacteria to access this rich source of the nutrient with a focus on the GHs involved in mucin degradation.

38 citations


Journal ArticleDOI
TL;DR: The current understanding of how N-glycosylation impacts the structure and function of the IgG1 Fc is described and new techniques that are poised to provide the next critical breakthroughs are described.
Abstract: Therapeutic monoclonal antibodies (mAbs) are the fastest growing group of drugs with 11 new antibodies or antibody-drug conjugates approved by the Food and Drug Administration in 2018. Many mAbs require effector function for efficacy, including antibody-dependent cell-mediated cytotoxicity triggered following contact of an immunoglobulin G (IgG)-coated particle with activating crystallizable fragment (Fc) γ receptors (FcγRs) expressed by leukocytes. Interactions between IgG1 and the FcγRs require post-translational modification of the Fc with an asparagine-linked carbohydrate (N-glycan). Though the structure of IgG1 Fc and the role of Fc N-glycan composition on disease were known for decades, the underlying mechanism of how the N-glycan affected FcγR binding was not defined until recently. This review will describe the current understanding of how N-glycosylation impacts the structure and function of the IgG1 Fc and describe new techniques that are poised to provide the next critical breakthroughs.

37 citations


Journal ArticleDOI
TL;DR: This work focuses on the pro- and anti-inflammatory properties of Gal-8, and discusses the potential use of this lectin in order to shape the immune response, according to the context.
Abstract: Galectins (Gals), a family of mammalian lectins, have emerged as key regulators of the immune response, being implicated in several physiologic and pathologic conditions. Lately, there is increasing data regarding the participation of Galectin-8 (Gal-8) in both the adaptive and innate immune responses, as well as its high expression in inflammatory disorders. Here, we focus on the pro- and anti-inflammatory properties of Gal-8 and discuss the potential use of this lectin in order to shape the immune response, according to the context.

Journal ArticleDOI
TL;DR: Sialylated glycans, previously shown to improve HDL binding, are more abundant on the lipid-binding domain of CSF APOE and reduced in plasma APOE, indicating that APOE glycosylation may be implicated in lipoprotein binding flexibility.
Abstract: The O-glycoprotein apolipoprotein E (APOE), the strongest genetic risk factor for Alzheimer's disease, associates with lipoproteins. Cerebrospinal fluid (CSF) APOE binds only high-density lipoproteins (HDLs), while plasma APOE attaches to lipoproteins of diverse sizes with binding fine-tuned by the C-terminal loop. To better understand the O-glycosylation on this critical molecule and differences across tissues, we analyzed the O-glycosylation on APOE isolated from the plasma and CSF of aged individuals. Detailed LC-MS/MS analyses allowed the identification of the glycosite and the attached glycan and site occupancy for all detectable glycosites on APOE and further three-dimensional modeling of physiological glycoforms of APOE. APOE is O-glycosylated at several sites: Thr8, Thr18, Thr194, Ser197, Thr289, Ser290 and Ser296. Plasma APOE held more abundant (20.5%) N-terminal (Thr8) sialylated core 1 (Neu5Acα2-3Galβ1-3GalNAcα1-) glycosylation compared to CSF APOE (0.1%). APOE was hinge domain glycosylated (Thr194 and Ser197) in both CSF (27.3%) and plasma (10.3%). CSF APOE held almost 10-fold more abundant C-terminal (Thr289, Ser290 and Ser296) glycosylation (36.8% of CSF peptide283-299 was glycosylated, 3.8% of plasma peptide283-299), with sialylated and disialylated (Neu5Acα2-3Galβ1-3(Neu5Acα2-6) GalNAcα1-) core 1 structures. Modeling suggested that C-terminal glycosylation, particularly the branched disialylated structure, could interact across domains including the receptor-binding domain. These data, although limited by sample size, suggest that there are tissue-specific APOE glycoforms. Sialylated glycans, previously shown to improve HDL binding, are more abundant on the lipid-binding domain of CSF APOE and reduced in plasma APOE. This indicates that APOE glycosylation may be implicated in lipoprotein-binding flexibility.

Journal ArticleDOI
TL;DR: Using a microarray of diverse, structurally defined glycans, it is shown that Siglec-15 binds with higher avidity to sialylated glycans other than sTn or related antigen sequences, and activation of the SYK/MAPK signaling pathway following antibody cross-linking of SigleC-15 that may modulate the functional activity of macrophages is observed.
Abstract: Siglec-15 is a conserved sialic acid-binding Ig-like lectin expressed on osteoclast progenitors that plays an important role in osteoclast development and function. It is also expressed by tumor-associated macrophages and by some tumors, where it is thought to contribute to the immunosuppressive microenvironment. It was shown previously that engagement of macrophage-expressed Siglec-15 with tumor cells expressing its ligand, sialyl Tn (sTn), triggered production of TGF-β. In the present study, we have further investigated the interaction between Siglec-15 and sTn on tumor cells and its functional consequences. Based on binding assays with lung and breast cancer cell lines and glycan-modified cells, we failed to see evidence for recognition of sTn by Siglec-15. However, using a microarray of diverse, structurally-defined glycans, we show that Siglec-15 binds with higher avidity to sialylated glycans other than sTn or related antigen sequences. In addition, we were unable to demonstrate enhanced TGF-β secretion following co-culture of Siglec-15-expressing monocytic cells lines with tumor cells expressing sTn, or following Siglec-15 cross-linking with monoclonal antibodies. However, we did observe activation of the SYK/MAPK signaling pathway following antibody cross-linking of Siglec-15 that may modulate the functional activity of macrophages.

Journal ArticleDOI
TL;DR: This review article introduces why the IgG glycans are of distinguished interest, gives a background on the unique enzymatic tools available to study the IgT glycans, and presents an overview of applications utilizing these enzymes for various modifications of the Igg glycans.
Abstract: The importance of IgG glycosylation has been known for many years not only by scientists in glycobiology but also by human pathogens that have evolved specific enzymes to modify these glycans with fundamental impact on IgG function. The rise of IgG as a major therapeutic scaffold for many cancer and immunological indications combined with the availability of unique enzymes acting specifically on IgG Fc-glycans have spurred a range of applications to study this important post-translational modification on IgG. This review article introduces why the IgG glycans are of distinguished interest, gives a background on the unique enzymatic tools available to study the IgG glycans and finally presents an overview of applications utilizing these enzymes for various modifications of the IgG glycans. The applications covered include site-specific glycan transglycosylation and conjugation, analytical workflows for monoclonal antibodies and serum diagnostics. Additionally, the review looks ahead and discusses the importance of O-glycosylation for IgG3, Fc-fusion proteins and other new formats of biopharmaceuticals.

Journal ArticleDOI
TL;DR: The results demonstrate how current analytical techniques can be applied to characterize human milk composition, providing new tools to help the scientific community shed new light on the impact of HMOs during infant development.
Abstract: Human breast milk is an incredibly rich and complex biofluid composed of proteins, lipids and complex carbohydrates, including a diverse repertoire of free human milk oligosaccharides (HMOs). Strikingly, HMOs are not digested by the infant but function as prebiotics for bacterial strains associated with numerous benefits. Considering the broad variety of beneficial effects of HMOs, and the vast number of factors that affect breast milk composition, the analysis of HMO diversity and complexity is of utmost relevance. Using human milk samples from a cohort of Bangladeshi mothers participating in a study on malnutrition and stunting in children, we have characterized breast milk oligosaccharide composition by means of permethylation followed by liquid chromatography coupled with high-resolution tandem mass spectrometry (LC-MS/MS) analysis. This approach identified over 100 different glycoforms and showed a wide diversity of milk composition, with a predominance of fucosylated and sialylated HMOs over nonmodified HMOs. We observed that these samples contain on average 80 HMOs, with the highest permethylated masses detected being >5000 mass units. Here we report an easily implemented method developed for the separation, characterization and relative quantitation of large arrays of HMOs, including higher molecular weight sialylated HMOs. Our ultimate goal is to create a simple, high-throughput method, which can be used for full characterization of sialylated and/or fucosylated HMOs. These results demonstrate how current analytical techniques can be applied to characterize human milk composition, providing new tools to help the scientific community shed new light on the impact of HMOs during infant development.

Journal ArticleDOI
TL;DR: A detailed discussion on how various steps during Notch activation are regulated by glycans is provided, which will potentially be of benefit to investigators examining the contribution of glycosylation to other developmental processes.
Abstract: To build a complex body composed of various cell types and tissues and to maintain tissue homeostasis in the postembryonic period, animals use a small number of highly conserved intercellular communication pathways. Among these is the Notch signaling pathway, which is mediated via the interaction of transmembrane Notch receptors and ligands usually expressed by neighboring cells. Maintaining optimal Notch pathway activity is essential for normal development, as evidenced by various human diseases caused by decreased and increased Notch signaling. It is therefore not surprising that multiple mechanisms are used to control the activation of this pathway in time and space. Over the last 20 years, protein glycosylation has been recognized as a major regulatory mechanism for Notch signaling. In this review, we will provide a summary of the various types of glycan that have been shown to modulate Notch signaling. Building on recent advances in the biochemistry, structural biology, cell biology and genetics of Notch receptors and the glycosyltransferases that modify them, we will provide a detailed discussion on how various steps during Notch activation are regulated by glycans. Our hope is that the current review article will stimulate additional research in the field of Notch glycobiology and will potentially be of benefit to investigators examining the contribution of glycosylation to other developmental processes.

Journal ArticleDOI
TL;DR: The role of N-glycosylation in the activity of glycosyltransferases is focused on and all available data about this phenomenon is summarized to help contribute to the development of new therapy methods and novel glycoengineering enzymes with improved properties.
Abstract: N-glycosylation is one of the most important posttranslational modifications of proteins. It plays important roles in the biogenesis and functions of proteins by influencing their folding, intracellular localization, stability and solubility. N-glycans are synthesized by glycosyltransferases, a complex group of ubiquitous enzymes that occur in most kingdoms of life. A growing body of evidence shows that N-glycans may influence processing and functions of glycosyltransferases, including their secretion, stability and substrate/acceptor affinity. Changes in these properties may have a profound impact on glycosyltransferase activity. Indeed, some glycosyltransferases have to be glycosylated themselves for full activity. N-glycans and glycosyltransferases play roles in the pathogenesis of many diseases (including cancers), so studies on glycosyltransferases may contribute to the development of new therapy methods and novel glycoengineered enzymes with improved properties. In this review, we focus on the role of N-glycosylation in the activity of glycosyltransferases and attempt to summarize all available data about this phenomenon.

Journal ArticleDOI
TL;DR: GALNT5 and its O-GalNAcylated products may have important roles in promoting progression of CCA and could possibly be novel targets for treatment of metastatic CCA.
Abstract: Mucin type O-glycosylation is a posttranslational modification of membrane and secretory proteins. Transferring of N-acetylgalactosamine, the first sugar of O-glycosylation, is catalyzed by one of the 20 isoforms of polypeptide N-acetylgalactosaminyltransferases (GALNTs). In this study, Vicia villosa lectin (VVL), a lectin that recognizes O-GalNAcylated glycans, was used to detect VVL-binding glycans (VBGs) in cholangiocarcinoma (CCA). The elevation of VBGs in tumor tissues of the liver fluke associated with CCA from hamsters and patients was noted. VBGs were detected in hyperplastic/dysplastic bile ducts and CCA but not in normal biliary epithelia and hepatocytes, indicating the association of VBGs with CCA development and progression. GALNT5 was shown to be the major isoform found in human CCA cell lines with high VBG expression. Suppression of GALNT5 expression using siRNA significantly reduced VBG expression, signifying the connection of GALNT5 and VBGs observed. Knocked-down GALNT5 expression considerably inhibited proliferation, migration and invasion of CCA cells. Increased expression of GALNT5 using pcDNA3.1-GALNT5 expression vector induced invasive phenotypes in CCA cells with low GALNT5 expression. Increasing of claudin-1 and decreasing of slug and vimentin expression together with inactivation of Akt/Erk signaling were noted in GALNT5 knocked-down cells. These observations were reversed in GALNT5 over-expressing cells. GALNT5-modulated progression of CCA cells was shown to be, in part, via GALNT5-mediated autocrine/paracrine factors that stimulated activations of Akt/Erk signaling and the epithelial to mesenchymal transition process. GALNT5 and its O-GalNAcylated products may have important roles in promoting progression of CCA and could possibly be novel targets for treatment of metastatic CCA.

Journal ArticleDOI
TL;DR: It is known that glycans play crucial roles in almost all known biological processes, and they are a target for biotherapeutics as well as for biofuels and biomaterials.
Abstract: It is known that glycans (variously known as carbohydrates, sugars, saccharides) play crucial roles in almost all known biological processes, and they are a target for biotherapeutics as well as for biofuels and biomaterials. Therefore, the information about these complex carbohydrates is important to organize carefully and to comprehensively integrate with other molecular data in order to understand their pivotal role in biology.

Journal ArticleDOI
TL;DR: The Sus-like paradigm that defines glycan uptake by the Bacteroidetes and the salient details of the PULs that target heparin/heparan sulfate and chondroitin sulfate/dermatan sulfates/hyaluronic acid, respectively, in B. thetaiotaomicron are discussed.
Abstract: The Bacteroidetes are numerically abundant Gram-negative organisms of the distal human gut with a greatly expanded capacity to degrade complex glycans. A subset of these are adept at scavenging host glycans within this environment, including mucin O-linked glycans, N-linked glycoproteins and highly sulfated glycosaminoglycans (GAGs) such as heparin (Hep) and chondroitin sulfate (CS). Several recent biochemical studies have revealed the specific polysaccharide utilization loci (PULs) within the model symbiont Bacteroides thetaiotaomicron for the deconstruction of these host glycans. Here we discuss the Sus-like paradigm that defines glycan uptake by the Bacteroidetes and the salient details of the PULs that target heparin/heparan sulfate (HS) and chondroitin sulfate/dermatan sulfate (DS)/hyaluronic acid (HA), respectively, in B. thetaiotaomicron. The ability of the Bacteroidetes to target highly sulfated host glycans is key to their success in the gut environment but can lead to inflammation in susceptible hosts. Therefore, our continued understanding of the molecular strategies employed by these bacteria to scavenge carbohydrate nutrition is likely to lead to novel ways to alter their metabolism to promote host health.

Journal ArticleDOI
TL;DR: This review underline the current knowledge of protein aggregation and glycation along with the crosstalk between the two, which may eventually lead to the development of cancer.
Abstract: Protein glycation and protein aggregation are two distinct phenomena being observed in cancer cells as factors promoting cancer cell viability. Protein aggregation is an abnormal interaction between proteins caused as a result of structural changes in them after any mutation or environmental assault. Protein aggregation is usually associated with neurodegenerative diseases like Alzheimer's and Parkinson's, but of late, research findings have shown its association with the development of different cancers like lung, breast and ovarian cancer. On the contrary, protein glycation is a cascade of irreversible nonenzymatic reaction of reducing sugar with the amino group of the protein resulting in the modification of protein structure and formation of advanced glycation end products (AGEs). These AGEs are reported to obstruct the normal function of proteins. Lately, it has been reported that protein aggregation occurs as a result of AGEs. This aggregation of protein promotes the transformation of healthy cells to neoplasia leading to tumorigenesis. In this review, we underline the current knowledge of protein aggregation and glycation along with the cross talk between the two, which may eventually lead to the development of cancer.

Journal ArticleDOI
TL;DR: The molecular mechanism of glycosidic bond cleavage by these enzymes and how specific point mutations convert them into glycosynthases are examined, which focuses on the structure of the loops within the glycoside hydrolase (GH) domain.
Abstract: The conserved N-glycan on Asn297 of immunoglobulin G (IgG) has significant impacts on antibody effector functions, and is a frequent target for antibody engineering. Chemoenzymatic synthesis has emerged as a strategy for producing antibodies with homogenous glycosylation and improved effector functions. Central to this strategy is the use of enzymes with activity on the Asn297 glycan. EndoS and EndoS2, produced by Streptococcus pyogenes, are endoglycosidases with remarkable specificity for Asn297 glycosylation, making them ideal tools for chemoenzymatic synthesis. Although both enzymes are specific for IgG, EndoS2 recognizes a wider range of glycans than EndoS. Recent progress has been made in understanding the structural basis for their activities on antibodies. In this review, we examine the molecular mechanism of glycosidic bond cleavage by these enzymes and how specific point mutations convert them into glycosynthases. We also discuss the structural basis for differences in the glycan repertoire that IgG-active endoglycosidases recognize, which focuses on the structure of the loops within the glycoside hydrolase (GH) domain. Finally, we discuss the important contributions of carbohydrate binding modules (CBMs) to endoglycosidase activity, and how CBMs work in concert with GH domains to produce optimal activity on IgG.

Journal ArticleDOI
TL;DR: Another activity that further differentiates substrate specificity among the GalNAc-Ts has been identified and the rate differences (Thr/Ser rate ratio) between Thr and Ser substrate glycosylation for 12 isoenzymes are determined.
Abstract: A family of polypeptide GalNAc-transferases (GalNAc-Ts) initiates mucin-type O-glycosylation, transferring GalNAc onto hydroxyl groups of Ser and Thr residues of target substrates. The 20 GalNAc-T isoenzymes in humans are classified into nine subfamilies according to sequence similarity. GalNAc-Ts select their sites of glycosylation based on weak and overlapping peptide sequence motifs, as well prior substrate O-GalNAc glycosylation at sites both remote (long-range) and neighboring (short-range) the acceptor. Together, these preferences vary among GalNAc-Ts imparting each isoenzyme with its own unique specificity. Studies on the first identified GalNAc-Ts showed Thr acceptors were preferred over Ser acceptors; however studies comparing Thr vs. Ser glycosylation across the GalNAc-T family are lacking. Using a series of identical random peptide substrates, with single Thr or Ser acceptor sites, we determined the rate differences (Thr/Ser rate ratio) between Thr and Ser substrate glycosylation for 12 isoenzymes (representing 7 GalNAc-T subfamilies). These Thr/Ser rate ratios varied across subfamilies, ranging from ~2 to ~18 (for GalNAc-T4/GalNAc-T12 and GalNAc-T3/GalNAc-T6, respectively), while nearly identical Thr/Ser rate ratios were observed for isoenzymes within subfamilies. Furthermore, the Thr/Ser rate ratios did not appreciably vary over a series of fixed sequence substrates of different relative activities, suggesting the ratio is a constant for each isoenzyme against single acceptor substrates. Finally, based on GalNAc-T structures, the different Thr/Ser rate ratios likely reflect differences in the strengths of the Thr acceptor methyl group binding to the active site pocket. With this work, another activity that further differentiates substrate specificity among the GalNAc-Ts has been identified.

Journal ArticleDOI
TL;DR: The wide array of extracellular glycoside hydrolases, and their accessory modules, that is possessed by C. perfringens are described, and the unique multimodularity of these proteins in the context of degrading the glycoconjugates in mucus as a potential component of disease is examined.
Abstract: The gastrointestinal tract of humans and animals is lined with mucus that serves as a barrier between the gut microbiota and the epithelial layer of the intestine. As the proteins present in mucus are typically heavily glycosylated, such as the mucins, several enteric commensal and pathogenic bacterial species are well-adapted to this rich carbon source and their genomes are replete with carbohydrate-active enzymes targeted towards dismantling the glycans and proteins present in mucus. One such species is Clostridium perfringens, a Gram-positive opportunistic pathogen indigenous to the gut of humans and animals. The genome of C. perfringens encodes numerous carbohydrate-active enzymes that are predicted or known to target glycosidic linkages within or on the termini of mucus glycans. Through this enzymatic activity, the degradation of the mucosal layer by C. perfringens has been implicated in a number of gastrointestinal diseases, the most severe of which is necrotic enteritis. In this review, we describe the wide array of extracellular glycoside hydrolases, and their accessory modules, that is possessed by C. perfringens, and examine the unique multimodularity of these proteins in the context of degrading the glycoconjugates in mucus as a potential component of disease.

Journal ArticleDOI
TL;DR: In this study, urinary GAGs were collected and purified from healthy males and females of adults and young adults using capillary zone electrophoresis and CZE-MS/MS relying on negative electron transfer dissociation (NETD).
Abstract: Urinary glycosaminoglycans (GAGs) can reflect the health condition of a human being, and the GAGs composition can be directly related to various diseases. In order to effectively utilize such information, a detailed understanding of urinary GAGs in healthy individuals can provide insight into the levels and structures of human urinary GAGs. In this study, urinary GAGs were collected and purified from healthy males and females of adults and young adults. The total creatinine-normalized urinary GAG content, molecular weight distribution and disaccharide compositions were determined. Using capillary zone electrophoresis (CZE)-mass spectrometry (MS) and CZE-MS/MS relying on negative electron transfer dissociation, the major components of healthy human urinary GAGs were determined. The structures of 10 GAG oligosaccharides representing the majority of human urinary GAGs were determined.

Journal ArticleDOI
TL;DR: This high-resolution glycome map underpinning normal monocyte-to-macrophage transition, the most detailed to date, aids the understanding of the molecular makeup pertaining to two vital innate immune cell types and forms an important reference for future glycoimmunological studies.
Abstract: Protein glycosylation impacts the development and function of innate immune cells. The glycophenotypes and the glycan remodelling associated with the maturation of macrophages from monocytic precursor populations remain incompletely described. Herein, label-free porous graphitised carbon-liquid chromatography-tandem mass spectrometry (PGC-LC-MS/MS) was employed to profile with high resolution the N- and O-glycome associated with human monocyte-to-macrophage transition. Primary blood-derived CD14+ monocytes were differentiated ex vivo in the absence of strong anti- and proinflammatory stimuli using a conventional 7-day granulocyte-macrophage colony-stimulating factor differentiation protocol with longitudinal sampling. Morphology and protein expression monitored by light microscopy and proteomics validated the maturation process. Glycomics demonstrated that monocytes and macrophages display similar N-glycome profiles, comprising predominantly paucimannosidic (Man1-3GlcNAc2Fuc0-1, 22.1-30.8%), oligomannosidic (Man5-9GlcNAc2, 29.8-35.7%) and α2,3/6-sialylated complex-type N-glycans with variable core fucosylation (27.6-39.1%). Glycopeptide analysis validated conjugation of these glycans to human proteins, while quantitative proteomics monitored the glycoenzyme expression levels during macrophage differentiation. Significant interperson glycome variations were observed suggesting a considerable physiology-dependent or heritable heterogeneity of CD14+ monocytes. Only few N-glycome changes correlated with the monocyte-to-macrophage transition across donors including decreased core fucosylation and reduced expression of mannose-terminating (paucimannosidic-/oligomannosidic-type) N-glycans in macrophages, while lectin flow cytometry indicated that more dramatic cell surface glycan remodelling occurs during maturation. The less heterogeneous core 1-rich O-glycome showed a minor decrease in core 2-type O-glycosylation but otherwise remained unchanged with macrophage maturation. This high-resolution glycome map underpinning normal monocyte-to-macrophage transition, the most detailed to date, aids our understanding of the molecular makeup pertaining to two vital innate immune cell types and forms an important reference for future glycoimmunological studies.

Posted ContentDOI
TL;DR: In this article, the impact of glycan microheterogeneity on the antigenicity of the spike (S) glycoprotein from SARS-CoV-2 and compare these predictions to reported antibody epitopes.
Abstract: We present an analysis of the impact of glycan microheterogeneity on the antigenicity of the spike (S) glycoprotein from SARS-CoV-2 and compare these predictions to reported antibody epitopes [1] Despite the relatively modest contribution of the glycans to the total molecular weight of the S trimer (17% for the HEK293 glycoform) they shield approximately 40% of the protein surface The 3D structures show that the protein surface is extensively shielded from antibody recognition by glycans, with the notable exception of the ACE2 receptor binding domain, and also that the degree of shielding is largely insensitive to the specific glycoform Lastly, we have identified peptides in the S glycoprotein that are likely to be presented in human leukocyte antigen (HLA) complexes, and discuss the role of S protein glycosylation in potentially modulating the innate and adaptive immune response to the SARS-CoV-2 virus or to a related vaccine

Journal ArticleDOI
TL;DR: The results indicate that the two symmetrically opposed N-glycans interact extensively through their core trimannose residues, and structural analysis shows that the core fucose position within the Fc core obstructs the access of N162 glycosylated FcγRs very much like a "door-stop", potentially decreasing the IgG/FcγR binding free energy.
Abstract: The immunoglobulin type G (IgG) Fc N-glycans are known to modulate the interaction with membrane-bound Fc γ receptors (FcγRs), fine-tuning the antibody's effector function in a sequence-dependent manner. Particularly interesting in this respect are the roles of galactosylation, which levels are linked to autoimmune conditions and aging, of core fucosylation, which is known to reduce significantly the antibody-dependent cellular cytotoxicity (ADCC), and of sialylation, which also reduces antibody-dependent cellular cytotoxicity (ADCC) but only in the context of core-fucosylation. In this article, we provide an atomistic level perspective through enhanced sampling computer simulations, based on replica exchange molecular dynamics (REMD), to understand the molecular determinants linking the Fc N-glycans sequence to the observed IgG1 function. Our results indicate that the two symmetrically opposed N-glycans interact extensively through their core trimannose residues. At room temperature, the terminal galactose on the α (1-6) arm is restrained to the protein through a network of interactions that keep the arm outstretched; meanwhile, the α (1-3) arm extends toward the solvent where a terminal sialic acid remains fully accessible. We also find that the presence of core fucose interferes with the extended sialylated α (1-3) arm, altering its conformational propensity and as a consequence of steric hindrance, significantly enhancing the Fc dynamics. Furthermore, structural analysis shows that the core-fucose position within the Fc core obstructs the access of N162 glycosylated FcγRs very much like a "door-stop," potentially decreasing the IgG/FcγR binding free energy. These results provide an atomistic level-of-detail framework for the design of high potency IgG1 Fc N-glycoforms.

Journal ArticleDOI
TL;DR: A significant increase in the diversity of characterized GH29 enzymes is provided, and the recombinant enzymes constitute a resource for the further functional exploration of this enzyme family.
Abstract: The deoxy sugar l-fucose is frequently found as a glycan constituent on and outside living cells, and in mammals it is involved in a wide range of biological processes including leukocyte trafficking, histo-blood group antigenicity and antibody effector functions. The manipulation of fucose levels in those biomedically important systems may provide novel insights and therapeutic leads. However, despite the large established sequence diversity of natural fucosidases, so far, very few enzymes have been characterized. We explored the diversity of the α-l-fucosidase-containing CAZY family GH29 by bio-informatic analysis, and by the recombinant production and exploration for fucosidase activity of a subset of 82 protein sequences that represent the family's large sequence diversity. After establishing that most of the corresponding proteins can be readily expressed in E. coli, more than half of the obtained recombinant proteins (57% of the entire subset) showed activity towards the simple chromogenic fucosylated substrate 4-nitrophenyl α-l-fucopyranoside. Thirty-seven of these active GH29 enzymes (and the GH29 subtaxa that they represent) had not been characterized before. With such a sequence diversity-based collection available, it can easily be used to screen for fucosidase activity towards biomedically relevant fucosylated glycoproteins. As an example, the subset was used to screen GH29 members for activity towards the naturally occurring sialyl-Lewis x-type epitope on glycoproteins, and several such enzymes were identified. Together, the results provide a significant increase in the diversity of characterized GH29 enzymes, and the recombinant enzymes constitute a resource for the further functional exploration of this enzyme family.

Journal ArticleDOI
TL;DR: It was found that most tested GBPs have preferences toward only one branch of the complex N-glycans, and their binding toward the epitope-presenting branch can be significantly affected by structures on the other branch.
Abstract: Glycans mediate a wide variety of biological roles via recognition by glycan-binding proteins (GBPs). Comprehensive knowledge of such interaction is thus fundamental to glycobiology. While the primary binding feature of GBPs can be easily uncovered by using a simple glycan microarray harboring limited numbers of glycan motifs, their fine specificities are harder to interpret. In this study, we prepared 98 closely related N-glycoforms that contain 5 common glycan epitopes which allowed the determination of the fine binding specificities of several plant lectins and anti-glycan antibodies. These N-glycoforms differ from each other at the monosaccharide level and were presented in an identical format to ensure comparability. With the analysis platform we used, it was found that most tested GBPs have preferences toward only one branch of the complex N-glycans, and their binding toward the epitope-presenting branch can be significantly affected by structures on the other branch. Fine specificities described here are valuable for a comprehensive understanding and applications of GBPs.