scispace - formally typeset
Search or ask a question

Showing papers in "Nature Structural & Molecular Biology in 2010"


Journal ArticleDOI
TL;DR: Individual-nucleotide resolution UV cross-linking and immunoprecipitation (iCLIP) data show that hnRNP C recognizes uridine tracts with a defined long-range spacing consistent with hmRNP particle organization, and integration of transcriptome-wide iCLIP data and alternative splicing profiles into an 'RNA map' indicates how the positioning of hn RNP particles determines their effect on the inclusion of alternative exons.
Abstract: In the nucleus of eukaryotic cells, nascent transcripts are associated with heterogeneous nuclear ribonucleoprotein (hnRNP) particles that are nucleated by hnRNP C. Despite their abundance, however, it remained unclear whether these particles control pre-mRNA processing. Here, we developed individual-nucleotide resolution UV cross-linking and immunoprecipitation (iCLIP) to study the role of hnRNP C in splicing regulation. iCLIP data show that hnRNP C recognizes uridine tracts with a defined long-range spacing consistent with hnRNP particle organization. hnRNP particles assemble on both introns and exons but remain generally excluded from splice sites. Integration of transcriptome-wide iCLIP data and alternative splicing profiles into an 'RNA map' indicates how the positioning of hnRNP particles determines their effect on the inclusion of alternative exons. The ability of high-resolution iCLIP data to provide insights into the mechanism of this regulation holds promise for studies of other higher-order ribonucleoprotein complexes.

1,053 citations


Journal ArticleDOI
TL;DR: It is shown that low-temperature and low-salt conditions can stabilize disc-shaped oligomers (pentamers) that are substantially more toxic to mouse cortical neurons than protofibrils and fibrils, and that these neurotoxic oligomers do not have the β-sheet structure characteristic of fibril.
Abstract: The amyloid-beta(1-42) (Abeta42) peptide rapidly aggregates to form oligomers, protofibils and fibrils en route to the deposition of amyloid plaques associated with Alzheimer's disease. We show that low-temperature and low-salt conditions can stabilize disc-shaped oligomers (pentamers) that are substantially more toxic to mouse cortical neurons than protofibrils and fibrils. We find that these neurotoxic oligomers do not have the beta-sheet structure characteristic of fibrils. Rather, the oligomers are composed of loosely aggregated strands whose C termini are protected from solvent exchange and which have a turn conformation, placing Phe19 in contact with Leu34. On the basis of NMR spectroscopy, we show that the structural conversion of Abeta42 oligomers to fibrils involves the association of these loosely aggregated strands into beta-sheets whose individual beta-strands polymerize in a parallel, in-register orientation and are staggered at an intermonomer contact between Gln15 and Gly37.

966 citations


Journal ArticleDOI
TL;DR: This work identifies p53-binding protein 1 (53BP1) as an essential factor for sustaining the growth arrest induced by Brca1 deletion, and finds reduced 53BP1 expression in subsets of sporadic triple-negative and BRCA-associated breast cancers, indicating the potential clinical implications of these findings.
Abstract: Germ-line mutations in breast cancer 1, early onset (BRCA1) result in predisposition to breast and ovarian cancer. BRCA1-mutated tumors show genomic instability, mainly as a consequence of impaired recombinatorial DNA repair. Here we identify p53-binding protein 1 (53BP1) as an essential factor for sustaining the growth arrest induced by Brca1 deletion. Depletion of 53BP1 abrogates the ATM-dependent checkpoint response and G2 cell-cycle arrest triggered by the accumulation of DNA breaks in Brca1-deleted cells. This effect of 53BP1 is specific to BRCA1 function, as 53BP1 depletion did not alleviate proliferation arrest or checkpoint responses in Brca2-deleted cells. Notably, loss of 53BP1 partially restores the homologous-recombination defect of Brca1-deleted cells and reverts their hypersensitivity to DNA-damaging agents. We find reduced 53BP1 expression in subsets of sporadic triple-negative and BRCA-associated breast cancers, indicating the potential clinical implications of our findings.

903 citations


Journal ArticleDOI
TL;DR: The common principles of post-translational modifications and their importance in signal integration underlying epidermal growth factor receptor signaling and endocytosis, DNA-damage responses and immunity are reviewed.
Abstract: Post-translational modifications of proteins and the domains that recognize these modifications have central roles in creating a highly dynamic relay system that reads and responds to alterations in the cellular microenvironment. Here we review the common principles of post-translational modifications and their importance in signal integration underlying epidermal growth factor receptor signaling and endocytosis, DNA-damage responses and immunity.

673 citations


Journal ArticleDOI
TL;DR: Two modifications important for Trithorax- and Polycomb-mediated gene regulation have methylation-specific distributions at regulatory regions in human spermatozoa, compatible with a role for Polycomb in repressing somatic determinants across generations, potentially in a variegating manner.
Abstract: In higher eukaryotes, histone methylation is involved in maintaining cellular identity during somatic development. As most nucleosomes are replaced by protamines during spermatogenesis, it is unclear whether histone modifications function in paternal transmission of epigenetic information. Here we show that two modifications important for Trithorax- and Polycomb-mediated gene regulation have methylation-specific distributions at regulatory regions in human spermatozoa. Histone H3 Lys4 dimethylation (H3K4me2) marks genes that are relevant in spermatogenesis and cellular homeostasis. In contrast, histone H3 Lys27 trimethylation (H3K27me3) marks developmental regulators in sperm, as in somatic cells. However, nucleosomes are only moderately retained at regulatory regions in human sperm. Nonetheless, genes with extensive H3K27me3 coverage around transcriptional start sites in particular tend not to be expressed during male and female gametogenesis or in preimplantation embryos. Promoters of orthologous genes are similarly modified in mouse spermatozoa. These data are compatible with a role for Polycomb in repressing somatic determinants across generations, potentially in a variegating manner.

614 citations


Journal ArticleDOI
TL;DR: Results show that HDAC1 and HDAC2 function in the DNA-damage response by promoting DSB repair and thus provide important insights into the radio-sensitizing effects of HDAC inhibitors that are being developed as cancer therapies.
Abstract: DNA double-strand break (DSB) repair occurs within chromatin and can be modulated by chromatin-modifying enzymes. Here we identify the related human histone deacetylases HDAC1 and HDAC2 as two participants in the DNA-damage response. We show that acetylation of histone H3 Lys56 (H3K56) was regulated by HDAC1 and HDAC2 and that HDAC1 and HDAC2 were rapidly recruited to DNA-damage sites to promote hypoacetylation of H3K56. Furthermore, HDAC1- and 2-depleted cells were hypersensitive to DNA-damaging agents and showed sustained DNA-damage signaling, phenotypes that reflect defective DSB repair, particularly by nonhomologous end-joining (NHEJ). Collectively, these results show that HDAC1 and HDAC2 function in the DNA-damage response by promoting DSB repair and thus provide important insights into the radio-sensitizing effects of HDAC inhibitors that are being developed as cancer therapies.

580 citations


Journal ArticleDOI
TL;DR: It is shown that protein conformations can be manipulated and studied with nanobodies in living cells, and camelid-derived single-domain antibodies that modulate the conformation and spectral properties of the green fluorescent protein (GFP) are selected.
Abstract: Protein conformation is critically linked to function and often controlled by interactions with regulatory factors. Here we report the selection of camelid-derived single-domain antibodies (nanobodies) that modulate the conformation and spectral properties of the green fluorescent protein (GFP). One nanobody could reversibly reduce GFP fluorescence by a factor of 5, whereas its displacement by a second nanobody caused an increase by a factor of 10. Structural analysis of GFP-nanobody complexes revealed that the two nanobodies induce subtle opposing changes in the chromophore environment, leading to altered absorption properties. Unlike conventional antibodies, the small, stable nanobodies are functional in living cells. Nanobody-induced changes were detected by ratio imaging and used to monitor protein expression and subcellular localization as well as translocation events such as the tamoxifen-induced nuclear localization of estrogen receptor. This work demonstrates that protein conformations can be manipulated and studied with nanobodies in living cells.

516 citations


Journal ArticleDOI
TL;DR: Computational and experimental approaches to the identification of miRNA-regulated genes are reviewed and bioinformatic analysis of over-represented pathways and nodes in protein-DNA interactomes formed from experimental candidate miRNA gene target lists can focus attention on biologically significant target genes.
Abstract: MicroRNAs (miRNAs) suppress gene expression by inhibiting translation, promoting mRNA decay or both. Each miRNA may regulate hundreds of genes to control the cell's response to developmental and other environmental cues. The best way to understand the function of a miRNA is to identify the genes that it regulates. Target gene identification is challenging because miRNAs bind to their target mRNAs by partial complementarity over a short sequence, suppression of an individual target gene is often small, and the rules of targeting are not completely understood. Here we review computational and experimental approaches to the identification of miRNA-regulated genes. The examination of changes in gene expression that occur when miRNA expression is altered and biochemical isolation of miRNA-associated transcripts complement target prediction algorithms. Bioinformatic analysis of over-represented pathways and nodes in protein-DNA interactomes formed from experimental candidate miRNA gene target lists can focus attention on biologically significant target genes.

495 citations


Journal ArticleDOI
TL;DR: In this article, the authors present genome-wide occupancy profiles for RNA polymerase (Pol) II, its phosphorylated forms and transcription factors in proliferating yeast, showing that the resulting elongation complex is composed of all the elongation factors and shows high levels of Ser7 and Ser5 phosphorylation on the C-terminal repeat domain (CTD) of Pol II.
Abstract: We present genome-wide occupancy profiles for RNA polymerase (Pol) II, its phosphorylated forms and transcription factors in proliferating yeast. Pol II exchanges initiation factors for elongation factors during a 5' transition that is completed 150 nucleotides downstream of the transcription start site (TSS). The resulting elongation complex is composed of all the elongation factors and shows high levels of Ser7 and Ser5 phosphorylation on the C-terminal repeat domain (CTD) of Pol II. Ser2 phosphorylation levels increase until 600-1,000 nucleotides downstream of the TSS and do not correlate with recruitment of Spt6 and Pcf11, which bind the Ser2-phosphorylated CTD in vitro. This indicates CTD-independent recruitment mechanisms and CTD masking in vivo. Elongation complexes are productive and disassemble in a two-step 3' transition. Paf1, Spt16 (part of the FACT complex), and the CTD kinases Bur1 and Ctk1 exit upstream of the polyadenylation site, whereas Spt4, Spt5, Spt6, Spn1 (also called Iws1) and Elf1 exit downstream. Transitions are uniform and independent of gene length, type and expression.

468 citations


Journal ArticleDOI
TL;DR: Direct roles for Rad51 at replication forks are revealed, demonstrating that Rad51 protects newly synthesized DNA from Mre11-dependent degradation and promotes continuous DNA synthesis.
Abstract: The role of Rad51 in an unperturbed cell cycle has been difficult to distinguish from its DNA repair function. Here, using EM to visualize replication intermediates assembled in Xenopus laevis egg extract, we show that Rad51 is required to prevent the accumulation of single-stranded DNA (ssDNA) gaps at replication forks and behind them. ssDNA gaps at forks arise from extended uncoupling of leading- and lagging-strand DNA synthesis. In contrast, ssDNA gaps behind forks, which are prevalent on damaged templates, result from Mre11-dependent degradation of newly synthesized DNA strands and are suppressed by inhibition of Mre11 nuclease activity. These findings reveal direct roles for Rad51 at replication forks, demonstrating that Rad51 protects newly synthesized DNA from Mre11-dependent degradation and promotes continuous DNA synthesis.

454 citations


Journal ArticleDOI
TL;DR: Data suggest that AGO1 functions differentially with 21- and 22-nt miRNAs to engage the RDR6-associated amplification apparatus, which is likely to trigger RDR 6-dependent siRNA production from target RNA.
Abstract: RNA interference pathways may involve amplification of secondary siRNAs by RNA-dependent RNA polymerases. In plants, RDR6-dependent secondary siRNAs arise from transcripts targeted by some microRNA (miRNA). Here, Arabidopsis thaliana secondary siRNA from mRNA, and trans-acting siRNA, are shown to be triggered through initial targeting by 22 nt miRNA that associate with AGO1. In contrast to canonical 21 nt miRNA, 22 nt miRNA primarily arise from foldback precursors containing asymmetric bulges. Using artificial miRNA constructs, conversion of asymmetric foldbacks to symmetric foldbacks resulted in production of 21 nt forms of miR173, miR472 and miR828. Both 21 and 22 nt forms associated with AGO1 and guided accurate slicer activity, but only 22 nt miRNA were competent to trigger RDR6-dependent siRNA from target RNA. These data suggest that AGO1 functions differentially with 21 and 22 nt miRNA to engage the RDR6-associated amplification apparatus.

Journal ArticleDOI
TL;DR: Recent findings on the mechanisms of resection in eukaryotes are reviewed, insights into the regulatory strategies that control it are provided, and the consequences of both its impairment and its deregulation are highlighted.
Abstract: DNA double-strand breaks are repaired by different mechanisms, including homologous recombination and nonhomologous end-joining. DNA-end resection, the first step in recombination, is a key step that contributes to the choice of DSB repair. Resection, an evolutionarily conserved process that generates single-stranded DNA, is linked to checkpoint activation and is critical for survival. Failure to regulate and execute this process results in defective recombination and can contribute to human disease. Here I review recent findings on the mechanisms of resection in eukaryotes, from yeast to vertebrates, provide insights into the regulatory strategies that control it, and highlight the consequences of both its impairment and its deregulation.

Journal ArticleDOI
TL;DR: The purification of full-length human BRCA2 is reported and it is shown that it binds to ∼6 RAD51 molecules and promotes RAD51 binding to ssDNA coated by replication protein A (RPA), in a manner that is stimulated by DSS1.
Abstract: BRCA2 is a tumor suppressor that functions in homologous recombination, a key genomic integrity pathway. BRCA2 interacts with RAD51, the central protein of recombination, which forms filaments on single-stranded DNA (ssDNA) to perform homology search and DNA strand invasion. We report the purification of full-length human BRCA2 and show that it binds to ~6 RAD51 molecules and promotes RAD51 binding to ssDNA coated by replication protein A (RPA), in a manner that is stimulated by DSS1.

Journal ArticleDOI
TL;DR: This work proposes a mechanism in which changes in the structural and epigenetic integrity of telomeres affect core histones and their chaperones, enforcing a self-perpetuating pathway of global epigenetic changes that ultimately leads to senescence.
Abstract: During replicative aging of primary cells morphological transformations occur, the expression pattern is altered and chromatin changes globally. Here we show that chronic damage signals, probably caused by telomere processing, affect expression of histones and lead to their depletion. We investigated the abundance and cell cycle expression of histones and histone chaperones and found defects in histone biosynthesis during replicative aging. Simultaneously, epigenetic marks were redistributed across the phases of the cell cycle and the DNA damage response (DDR) machinery was activated. The age-dependent reprogramming affected telomeric chromatin itself, which was progressively destabilized, leading to a boost of the telomere-associated DDR with each successive cell cycle. We propose a mechanism in which changes in the structural and epigenetic integrity of telomeres affect core histones and their chaperones, enforcing a self-perpetuating pathway of global epigenetic changes that ultimately leads to senescence.

Journal ArticleDOI
TL;DR: It is shown by careful reexamination that, in humans, RISC assembly and dicing are uncoupled, and ATP greatly facilitates RISC loading of small-RNA duplexes.
Abstract: The assembly of RNA-induced silencing complex (RISC) is a key process in small RNA-mediated gene silencing. In humans, small interfering RNAs (siRNAs) and microRNAs (miRNAs) are incorporated into RISCs containing the Argonaute (AGO) subfamily proteins Ago1-4. Previous studies have proposed that, unlike Drosophila melanogaster RISC assembly pathways, human RISC assembly is coupled with dicing and is independent of ATP. Here we show by careful reexamination that, in humans, RISC assembly and dicing are uncoupled, and ATP greatly facilitates RISC loading of small-RNA duplexes. Moreover, all four human AGO proteins show remarkably similar structural preferences for small-RNA duplexes: central mismatches promote RISC loading, and seed or 3'-mid (guide position 12-15) mismatches facilitate unwinding. All these features of human AGO proteins are highly reminiscent of fly Ago1 but not fly Ago2.

Journal ArticleDOI
TL;DR: Insight is provided into how an activating histone mark, in combination with linked repressive marks, is differentially 'read' by two related human demethylases, PHF8 and KIAA1718.
Abstract: Combinatorial readout of multiple covalent histone modifications is poorly understood. We provide insights into how an activating histone mark, in combination with linked repressive marks, is differentially 'read' by two related human demethylases, PHF8 and KIAA1718 (also known as JHDM1D). Both enzymes harbor a plant homeodomain (PHD) that binds Lys4-trimethylated histone 3 (H3K4me3) and a jumonji domain that demethylates either H3K9me2 or H3K27me2. The presence of H3K4me3 on the same peptide as H3K9me2 makes the doubly methylated peptide a markedly better substrate of PHF8, whereas the presence of H3K4me3 has the opposite effect, diminishing the H3K9me2 demethylase activity of KIAA1718 without adversely affecting its H3K27me2 activity. The difference in substrate specificity between the two is explained by PHF8 adopting a bent conformation, allowing each of its domains to engage its respective target, whereas KIAA1718 adopts an extended conformation, which prevents its access to H3K9me2 by its jumonji domain when its PHD engages H3K4me3.

Journal ArticleDOI
TL;DR: It is shown, using a human tumor cell line, that CDK8 is a positive regulator of genes within the serum response network, including several members of the activator protein 1 and early growth response family of oncogenic transcription factors.
Abstract: The Mediator complex allows communication between transcription factors and RNA polymerase II (RNAPII). Cyclin-dependent kinase 8 (CDK8), the kinase found in some variants of Mediator, has been characterized mostly as a transcriptional repressor. Recently, CDK8 was demonstrated to be a potent oncoprotein. Here we show, using a human tumor cell line, that CDK8 is a positive regulator of genes within the serum response network, including several members of the activator protein 1 and early growth response family of oncogenic transcription factors. Mechanistic studies show that CDK8 is not required for RNAPII recruitment or promoter escape. Instead, CDK8 depletion leads to the appearance of slower elongation complexes carrying hypophosphorylated RNAPII. CDK8-Mediator regulates precise steps in the assembly of the RNAPII elongation complex, including the recruitment of positive transcription elongation factor b and BRD4. Furthermore, CDK8-Mediator specifically interacts with positive transcription elongation factor b. Thus, we have uncovered a role for CDK8 in transcriptional regulation that may contribute to its oncogenic effects.

Journal ArticleDOI
TL;DR: The structures of domains of the influenza RNA-dependent RNA polymerase and the nonstructural NS1A protein provide opportunities for targeting these proteins to inhibit viral replication.
Abstract: The world is currently undergoing a pandemic caused by an H1N1 influenza A virus, the so-called 'swine flu'. The H5N1 ('bird flu') influenza A viruses, now circulating in Asia, Africa and Europe, are extremely virulent in humans, although they have not so far acquired the ability to transfer efficiently from human to human. These health concerns have spurred considerable interest in understanding the molecular biology of influenza A viruses. Recent structural studies of influenza A virus proteins (or fragments) help enhance our understanding of the molecular mechanisms of the viral proteins and the effects of drug resistance to improve drug design. The structures of domains of the influenza RNA-dependent RNA polymerase and the nonstructural NS1A protein provide opportunities for targeting these proteins to inhibit viral replication.

Journal ArticleDOI
TL;DR: It is shown that human cells possess an analogous mechanism to restriction endonucleases, which is induced by interferon following DNA detection, and it deaminates foreign double-stranded DNA cytidines to uridines, which leads to foreign DNA degradation.
Abstract: APOBEC3 cytidine deaminases have been implicated in restriction of retroviruses and retrotransposons in mammalian cells. Now human APOBEC3A is shown to be upregulated by interferon and to catalyze the deamination of foreign double-stranded DNA transfected into primary cells or cell lines, with no detectable effect on genomic DNA.

Journal ArticleDOI
TL;DR: A striking enrichment of Argonaute binding sites in genes important for miRNA function is revealed, suggesting an autoregulatory role that may confer robustness to the miRNA pathway.
Abstract: MicroRNAs are small RNAs involved in regulation of cognate mRNAs, but predicting their exact targets has been difficult. Using a cross-linking immunoprecipitation technique, a comprehensive examination of endogenous mRNA target sites associated with the C. elegans Argonaute family member ALG-1 is now presented.

Journal ArticleDOI
TL;DR: It is proposed that CUGexp RNA causes two separate effects: loss of Mbnl1 function (disrupting splicing) and loss of another function that disrupts extracellular matrix mRNA regulation, possibly mediated by MbnL2.
Abstract: The common form of myotonic dystrophy (DM1) is associated with the expression of expanded CTG DNA repeats as RNA (CUG(exp) RNA). To test whether CUG(exp) RNA creates a global splicing defect, we compared the skeletal muscle of two mouse models of DM1, one expressing a CTG(exp) transgene and another homozygous for a defective muscleblind 1 (Mbnl1) gene. Strong correlation in splicing changes for approximately 100 new Mbnl1-regulated exons indicates that loss of Mbnl1 explains >80% of the splicing pathology due to CUG(exp) RNA. In contrast, only about half of mRNA-level changes can be attributed to loss of Mbnl1, indicating that CUG(exp) RNA has Mbnl1-independent effects, particularly on mRNAs for extracellular matrix proteins. We propose that CUG(exp) RNA causes two separate effects: loss of Mbnl1 function (disrupting splicing) and loss of another function that disrupts extracellular matrix mRNA regulation, possibly mediated by Mbnl2. These findings reveal unanticipated similarities between DM1 and other muscular dystrophies.

Journal ArticleDOI
TL;DR: It is found that Xrcc4–ligase IV is not required for but rather suppresses translocations, implying that alt-NHEJ is the primary mediator of translocation formation in mammalian cells.
Abstract: Chromosomal translocations are known to be formed via non-homologous end-joining (NHEJ). Now analysis of translocations in mammalian cells lacking XRCC4/DNA ligase IV, a component of the classical NHEJ pathway, indicates that the alternative NHEJ pathway might be responsible for the majority of translocation events. Chromosomal translocations in hematologic and mesenchymal tumors form overwhelmingly by nonhomologous end-joining (NHEJ). Canonical NHEJ, essential for the repair of radiation-induced and some programmed double-strand breaks (DSBs), requires the Xrcc4–ligase IV complex. For other DSBs, the requirement for Xrcc4–ligase IV is less stringent, suggesting the existence of alternative end-joining (alt-NHEJ) pathways. To understand the contributions of the canonical NHEJ and alt-NHEJ pathways, we examined translocation formation in cells deficient in Xrcc4–ligase IV. We found that Xrcc4–ligase IV is not required for but rather suppresses translocations. Translocation breakpoint junctions have similar characteristics in wild-type cells and cells deficient in Xrcc4–ligase IV, including an unchanged bias toward microhomology, unlike what is observed for intrachromosomal DSB repair. Complex insertions in some junctions show that joining can be iterative, encompassing successive processing steps before joining. Our results imply that alt-NHEJ is the primary mediator of translocation formation in mammalian cells.

Journal ArticleDOI
TL;DR: The generation of Lys 11-linked polyubiquitin in vitro is reported, for which the Lys11-specific E2 enzyme UBE2S was fused to a ubiquitin binding domain, and the OTU family deubiqueitinase Cezanne is identified as the first deubiqu itinase with Lys11 -linkage preference.
Abstract: Ubiquitin is a versatile cellular signaling molecule that can form polymers of eight different linkages, and individual linkage-types have been associated with distinct cellular functions. Though little is currently known about Lys11-linked ubiquitin chains, recent data indicate that they may be as abundant as Lys48-linkages and involved in vital cellular processes. Here we report the generation of Lys11-linked polyubiquitin in vitro, for which the Lys11-specific E2 enzyme UBE2S was fused to a ubiquitin binding domain. Crystallography and NMR analyses of Lys11-linked diubiquitin reveal that Lys11-linked chains adopt compact conformations in which Ile44 is solvent exposed. Furthermore, we identify the OTU family deubiquitinase Cezanne as the first deubiquitinase with Lys11-linkage preference. Our data highlight the intrinsic specificity of the ubiquitin system that extends to Lys11-linked chains, and emphasize that differentially linked polyubiquitin chains must be regarded as independent posttranslational modifications.

Journal ArticleDOI
TL;DR: It is shown that human PALB2 binds DNA, preferentially D-loop structures, and directly interacts with the RAD51 recombinase to stimulate strand invasion, a vital step of homologous recombination.
Abstract: Inherited mutations in human PALB2 are associated with a predisposition to breast and pancreatic cancers. PALB2's tumor-suppressing effect is thought to be based on its ability to facilitate BRCA2's function in homologous recombination. However, the biochemical properties of PALB2 are unknown. Here we show that human PALB2 binds DNA, preferentially D-loop structures, and directly interacts with the RAD51 recombinase to stimulate strand invasion, a vital step of homologous recombination. This stimulation occurs through reinforcing biochemical mechanisms, as PALB2 alleviates inhibition by RPA and stabilizes the RAD51 filament. Moreover, PALB2 can function synergistically with a BRCA2 chimera (termed piccolo, or piBRCA2) to further promote strand invasion. Finally, we show that PALB2-deficient cells are sensitive to PARP inhibitors. Our studies provide the first biochemical insights into PALB2's function with piBRCA2 as a mediator of homologous recombination in DNA double-strand break repair.

Journal ArticleDOI
TL;DR: The data elucidate the mechanism by which hypermodified nucleoside 2-methylthio-N6 isopentenyl adenosine at position 37 in tRNAPheGAA stabilizes mRNA-tRNA interactions in all three tRNA binding sites and allow rationalization of how modification deficiencies of ms2i6A37 in t RNAs may lead to shifts of the translational reading frame.
Abstract: One key question in protein biosynthesis is how the ribosome couples mRNA and tRNA movements to prevent disruption of weak codon-anticodon interactions and loss of the translational reading frame during translocation. Here we report the complete path of mRNA on the 70S ribosome at the atomic level (3.1-A resolution), and we show that one of the conformational rearrangements that occurs upon transition from initiation to elongation is a narrowing of the downstream mRNA tunnel. This rearrangement triggers formation of a network of interactions between the mRNA downstream of the A-site codon and the elongating ribosome. Our data elucidate the mechanism by which hypermodified nucleoside 2-methylthio-N6 isopentenyl adenosine at position 37 (ms(2)i(6)A37) in tRNA(Phe)(GAA) stabilizes mRNA-tRNA interactions in all three tRNA binding sites. Another network of contacts is formed between this tRNA modification and ribosomal elements surrounding the mRNA E/P kink, resulting in the anchoring of P-site tRNA. These data allow rationalization of how modification deficiencies of ms(2)i(6)A37 in tRNAs may lead to shifts of the translational reading frame.

Journal ArticleDOI
TL;DR: In eukaryotes, most intracellular membrane fusion reactions are mediated by the interaction of SNARE proteins that are present in both fusing membranes, and it is shown unambiguously that one SNARE complex is sufficient for membrane fusion.
Abstract: In eukaryotes, most intracellular membrane fusion reactions are mediated by the interaction of SNARE proteins that are present in both fusing membranes. However, the minimal number of SNARE complexes needed for membrane fusion is not known. Here we show unambiguously that one SNARE complex is sufficient for membrane fusion. We performed controlled in vitro Forster resonance energy transfer (FRET) experiments and found that liposomes bearing only a single SNARE molecule are still capable of fusion with other liposomes or with purified synaptic vesicles. Furthermore, we demonstrated that multiple SNARE complexes do not act cooperatively, showing that synergy between several SNARE complexes is not needed for membrane fusion. Our findings shed new light on the mechanism of SNARE-mediated membrane fusion and call for a revision of current views of fusion events such as the fast release of neurotransmitters.

Journal ArticleDOI
TL;DR: It is shown that Lys4 (K4) trimethylation of histone H3 is rhythmic and follows the same profile as previously described H3 acetylation on circadian promoters, which favors a scenario in which H3K4 trim methylation by MLL1 is required to establish a permissive chromatin state for circadian transcription.
Abstract: Circadian rhythms rely on a molecular clock that effects specific gene expression. Recently it has become clear that there is a tight connection between circadian gene transcription and histone acetylation. Histone methyltransferase MLL1, and its product histone H3K4me3, are now shown to cycle at clock-responsive promoters. The former binds key circadian transcription factors and is required for rhythmic gene expression and chromatin modification.

Journal ArticleDOI
TL;DR: The discovery of specific cis-acting modifications and trans-acting proteins that affect miRNA half-life reveals new elements that contribute to the homeostasis of these vital regulatory molecules.
Abstract: MicroRNAs (miRNAs) control essential gene regulatory pathways in plants and animals. Serving as guides in silencing complexes, miRNAs direct Argonaute proteins to specific target messenger RNAs to repress protein expression. The mature, 22-nucleotide (nt) miRNA is the product of multiple processing steps, and recent studies have uncovered factors that directly control the stability of the functional RNA form. Although alteration of miRNA levels has been linked to numerous disease states, the mechanisms responsible for stabilized or reduced miRNA expression have been largely elusive. The discovery of specific cis-acting modifications and trans-acting proteins that affect miRNA half-life reveals new elements that contribute to the homeostasis of these vital regulatory molecules.

Journal ArticleDOI
TL;DR: This work has generated the first genome-wide nucleosome positioning map for Schizosaccharomyces pombe and annotated transcription start and termination sites genome wide, and found surprising differences from the previously published nucleosomes organization of the distantly related yeast SacCharomyces cerevisiae.
Abstract: Nucleosome occupancy can affect the accessibility of DNA to other factors. A genome-wide map of nucleosomes in Schizosaccharomyces pombe is now presented. Comparisons to published Saccharomyces cerevisiae maps reveal species-specific differences arguing for evolutionary plasticity of nucleosome positioning mechanisms. Positioned nucleosomes limit the access of proteins to DNA and implement regulatory features encoded in eukaryotic genomes. Here we have generated the first genome-wide nucleosome positioning map for Schizosaccharomyces pombe and annotated transcription start and termination sites genome wide. Using this resource, we found surprising differences from the previously published nucleosome organization of the distantly related yeast Saccharomyces cerevisiae. DNA sequence guides nucleosome positioning differently: for example, poly(dA-dT) elements are not enriched in S. pombe nucleosome-depleted regions. Regular nucleosomal arrays emanate more asymmetrically—mainly codirectionally with transcription—from promoter nucleosome-depleted regions, but promoters harboring the histone variant H2A.Z also show regular arrays upstream of these regions. Regular nucleosome phasing in S. pombe has a very short repeat length of 154 base pairs and requires a remodeler, Mit1, that is conserved in humans but is not found in S. cerevisiae. Nucleosome positioning mechanisms are evidently not universal but evolutionarily plastic.

Journal ArticleDOI
TL;DR: A pH-dependent modulation of the interaction of the IXI motif with β4 and β8 is observed, consistent with a pH- dependent regulation of the chaperone function.
Abstract: The small heat shock protein alphaB-crystallin (alphaB) contributes to cellular protection against stress. For decades, high-resolution structural studies on oligomeric alphaB have been confounded by its polydisperse nature. Here, we present a structural basis of oligomer assembly and activation of the chaperone using solid-state NMR and small-angle X-ray scattering (SAXS). The basic building block is a curved dimer, with an angle of approximately 121 degrees between the planes of the beta-sandwich formed by alpha-crystallin domains. The highly conserved IXI motif covers a substrate binding site at pH 7.5. We observe a pH-dependent modulation of the interaction of the IXI motif with beta4 and beta8, consistent with a pH-dependent regulation of the chaperone function. N-terminal region residues Ser59-Trp60-Phe61 are involved in intermolecular interaction with beta3. Intermolecular restraints from NMR and volumetric restraints from SAXS were combined to calculate a model of a 24-subunit alphaB oligomer with tetrahedral symmetry.