scispace - formally typeset
Journal ArticleDOI

Bone marrow cells adopt the phenotype of other cells by spontaneous cell fusion

TLDR
It is demonstrated that mouse bone marrow cells can fuse spontaneously with embryonic stem cells in culture in vitro that contains interleukin-3, which, without detailed genetic analysis, might be interpreted as ‘dedifferentiation’ or transdifferentiation.
Abstract
Recent studies have demonstrated that transplanted bone marrow cells can turn into unexpected lineages including myocytes, hepatocytes, neurons and many others. A potential problem, however, is that reports discussing such 'transdifferentiation' in vivo tend to conclude donor origin of transdifferentiated cells on the basis of the existence of donor-specific genes such as Y-chromosome markers. Here we demonstrate that mouse bone marrow cells can fuse spontaneously with embryonic stem cells in culture in vitro that contains interleukin-3. Moreover, spontaneously fused bone marrow cells can subsequently adopt the phenotype of the recipient cells, which, without detailed genetic analysis, might be interpreted as 'dedifferentiation' or transdifferentiation.

read more

Citations
More filters
Journal ArticleDOI

The new stem cell biology: something for everyone

TL;DR: This review sets out to provide a critical evaluation of the current literature in the adult stem cell field, and investigates the ability of multipotential adult stem cells to cross lineage boundaries (transdifferentiate).
Journal ArticleDOI

Stem cell in gastrointestinal structure and neoplastic development

TL;DR: With the emergence of the molecular pathways governing gastrointestinal stem cell function, and the identification of putative intestinal molecular stem cell markers, such as Musashi-1, comes a clearer insight into the properties of the gastrointestinal stem cells.
Journal ArticleDOI

C1qRp defines a new human stem cell population with hematopoietic and hepatic potential

TL;DR: The identification of human hepatocytes in mouse livers indicates that the NOD/SCID (nonobese diabetic/severe combined immunodeficient) mouse model can be a valuable tool to study the differentiation potential of adult human stem cells.
Journal ArticleDOI

Role of mesenchymal stem cells in regenerative medicine: application to bone and cartilage repair

TL;DR: An overview and expert opinion is provided on the in vivo ability of MSC to home into tissues, their regenerative properties and potential applications for cell-based therapies to treat bone and cartilage disorders.
Journal ArticleDOI

Autologous stem cell transplantation for myocardial repair

TL;DR: Light microscopy demonstrated that transplanted cells had differentiated into cells with myocyte-like characteristics and a robust increase of neovascularization as evidenced by von Willebrand factor-positive angioblasts and capillaries in transplanted hearts.
References
More filters
Journal ArticleDOI

Multilineage Potential of Adult Human Mesenchymal Stem Cells

TL;DR: Adult stem cells isolated from marrow aspirates of volunteer donors could be induced to differentiate exclusively into the adipocytic, chondrocytic, or osteocytic lineages.
Journal ArticleDOI

Viable offspring derived from fetal and adult mammalian cells

TL;DR: The birth of lambs from differentiated fetal and adult cells confirms that differentiation of that cell did not involve the irreversible modification of genetic material required for development to term and reinforces previous speculation that by inducing donor cells to become quiescent it will be possible to obtain normal development from a wide variety of differentiated cells.
Journal ArticleDOI

Formation of Pluripotent Stem Cells in the Mammalian Embryo Depends on the POU Transcription Factor Oct4

TL;DR: It is reported that the activity of Oct4 is essential for the identity of the pluripotential founder cell population in the mammalian embryo and also determines paracrine growth factor signaling from stem cells to the trophectoderm.
Journal ArticleDOI

Muscle Regeneration by Bone Marrow-Derived Myogenic Progenitors

TL;DR: Transplantation of genetically marked bone marrow into immunodeficient mice revealed that marrow-derived cells migrate into areas of induced muscle degeneration, undergo myogenic differentiation, and participate in the regeneration of the damaged fibers.
Journal ArticleDOI

Multi-Organ, Multi-Lineage Engraftment by a Single Bone Marrow-Derived Stem Cell

TL;DR: It is shown that rare cells that home to bone marrow can LTR primary and secondary recipients, and this finding may contribute to clinical treatment of genetic disease or tissue repair.
Related Papers (5)