scispace - formally typeset
Open AccessJournal ArticleDOI

Bone Tissue Engineering: Recent Advances and Challenges

TLDR
The fundamentals of bone tissue engineering are discussed, highlighting the current state of this field, and the recent advances of biomaterial and cell-based research, as well as approaches used to enhance bone regeneration.
Abstract
The worldwide incidence of bone disorders and conditions has trended steeply upward and is expected to double by 2020, especially in populations where aging is coupled with increased obesity and poor physical activity. Engineered bone tissue has been viewed as a potential alternative to the conventional use of bone grafts, due to their limitless supply and no disease transmission. However, bone tissue engineering practices have not proceeded to clinical practice due to several limitations or challenges. Bone tissue engineering aims to induce new functional bone regeneration via the synergistic combination of biomaterials, cells, and factor therapy. In this review, we discuss the fundamentals of bone tissue engineering, highlighting the current state of this field. Further, we review the recent advances of biomaterial and cell-based research, as well as approaches used to enhance bone regeneration. Specifically, we discuss widely investigated biomaterial scaffolds, micro- and nano-structural properties of these scaffolds, and the incorporation of biomimetic properties and/or growth factors. In addition, we examine various cellular approaches, including the use of mesenchymal stem cells (MSCs), embryonic stem cells (ESCs), adult stem cells, induced pluripotent stem cells (iPSCs), and platelet-rich plasma (PRP), and their clinical application strengths and limitations. We conclude by overviewing the challenges that face the bone tissue engineering field, such as the lack of sufficient vascularization at the defect site, and the research aimed at functional bone tissue engineering. These challenges will drive future research in the field.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Tunable osteogenic differentiation of hMPCs in tubular perfusion system bioreactor.

TL;DR: The capability of tuning osteogenic differentiation of hMPCs through the application of fluid flow and the addition of exogenous growth factors is demonstrated, which allows for the culture of distinct subpopulation within one dynamic system for the use of complex engineered tissue constructs.
Journal ArticleDOI

Effect of carboxylated graphene nanoplatelets on mechanical and in-vitro biological properties of polyvinyl alcohol nanocomposite scaffolds for bone tissue engineering

TL;DR: The study showed that the relatively low concentration of GNP in PVA-GNP scaffolds certainly exhibit a beneficial effect on the mechanical and biological properties of nanocomposite scaffolds, thus proving to be a promising biomaterials for bone tissue engineering applications.
Journal ArticleDOI

Understanding the role of dip-coating process parameters in the mechanical performance of polymer-coated bioglass robocast scaffolds.

TL;DR: The results suggest that the mechanical performance of the hybrid scaffolds is improved monotonically with polymer concentration, but this concentration cannot be increased indefinitely if the macroporosity interconnectivity, and thus the scaffold capacity to promote tissue ingrowth, are to be preserved.
Journal ArticleDOI

Immobilization of BMP-2 and VEGF within Multilayered Polydopamine-Coated Scaffolds and the Resulting Osteogenic and Angiogenic Synergy of Co-Cultured Human Mesenchymal Stem Cells and Human Endothelial Progenitor Cells.

TL;DR: Osteogenic and angiogenic gene expression analysis indicates a synergistic effect between the growth factor-loaded scaffolds and the co-culture conditions, indicating that the developed scaffolds hold great potential as an efficient platform for bone-tissue applications.
Journal ArticleDOI

Mechanical properties and osteogenic potential of hydroxyapatite-PLGA-collagen biomaterial for bone regeneration

TL;DR: The mechanical properties and osteogenic potential of nHAP-PLGA-collagen are characterized to assess the material’s suitability to support bone regeneration.
References
More filters
Journal ArticleDOI

Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors.

TL;DR: Induction of pluripotent stem cells from mouse embryonic or adult fibroblasts by introducing four factors, Oct3/4, Sox2, c-Myc, and Klf4, under ES cell culture conditions is demonstrated and iPS cells, designated iPS, exhibit the morphology and growth properties of ES cells and express ES cell marker genes.
Journal ArticleDOI

Induction of Pluripotent Stem Cells from Adult Human Fibroblasts by Defined Factors

TL;DR: It is demonstrated that iPS cells can be generated from adult human fibroblasts with the same four factors: Oct3/4, Sox2, Klf4, and c-Myc.
Journal ArticleDOI

Induced Pluripotent Stem Cell Lines Derived from Human Somatic Cells

TL;DR: This article showed that OCT4, SOX2, NANOG, and LIN28 factors are sufficient to reprogram human somatic cells to pluripotent stem cells that exhibit the essential characteristics of embryonic stem (ES) cells.
Journal ArticleDOI

Multilineage cells from human adipose tissue: implications for cell-based therapies.

TL;DR: The data support the hypothesis that a human lipoaspirate contains multipotent cells and may represent an alternative stem cell source to bone marrow-derived MSCs.
Journal ArticleDOI

Human Adipose Tissue Is a Source of Multipotent Stem Cells

TL;DR: To confirm whether adipose tissue contains stem cells, the PLA population and multiple clonal isolates were analyzed using several molecular and biochemical approaches and PLA cells exhibited unique characteristics distinct from those seen in MSCs, including differences in CD marker profile and gene expression.
Related Papers (5)