scispace - formally typeset
Open AccessJournal ArticleDOI

Guidelines for the use and interpretation of assays for monitoring cell death in higher eukaryotes

Lorenzo Galluzzi, +103 more
- 17 Apr 2009 - 
- Vol. 16, Iss: 8, pp 1093-1107
Reads0
Chats0
TLDR
A nonexhaustive comparison of methods to detect cell death with apoptotic or nonapoptotic morphologies, their advantages and pitfalls is provided and the importance of performing multiple, methodologically unrelated assays to quantify dying and dead cells is emphasized.
Abstract
Cell death is essential for a plethora of physiological processes, and its deregulation characterizes numerous human diseases Thus, the in-depth investigation of cell death and its mechanisms constitutes a formidable challenge for fundamental and applied biomedical research, and has tremendous implications for the development of novel therapeutic strategies It is, therefore, of utmost importance to standardize the experimental procedures that identify dying and dead cells in cell cultures and/or in tissues, from model organisms and/or humans, in healthy and/or pathological scenarios Thus far, dozens of methods have been proposed to quantify cell death-related parameters However, no guidelines exist regarding their use and interpretation, and nobody has thoroughly annotated the experimental settings for which each of these techniques is most appropriate Here, we provide a nonexhaustive comparison of methods to detect cell death with apoptotic or nonapoptotic morphologies, their advantages and pitfalls These guidelines are intended for investigators who study cell death, as well as for reviewers who need to constructively critique scientific reports that deal with cellular demise Given the difficulties in determining the exact number of cells that have passed the point-of-no-return of the signaling cascades leading to cell death, we emphasize the importance of performing multiple, methodologically unrelated assays to quantify dying and dead cells

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

High Concentrations of Rosiglitazone Reduce mRNA and Protein Levels of LRP1 in HepG2 Cells.

TL;DR: The findings demonstrate the mechanisms by which high concentrations of RGZ caused LRP1 levels to be reduced in HepG2 cells and will be helpful to better explain the pharmacological modulation of this pivotal membrane receptor by PPARγ agonists.
Journal ArticleDOI

TFEB/Mitf links impaired nuclear import to autophagolysosomal dysfunction in C9-ALS

TL;DR: The data suggest that the C9orf72-HRE impairs Mitf/TFEB nuclear import, thereby disrupting autophagy and exacerbating proteostasis defects in C9-ALS/FTD.
Journal ArticleDOI

Emodin-induced autophagy against cell apoptosis through the PI3K/AKT/mTOR pathway in human hepatocytes.

TL;DR: Emodin exhibited cytotoxicity in the L02 human hepatic cell line by promoting apoptosis, and it also induced autophagy through the suppression of the PI3K/AKT/mTOR signalling pathway.
Journal ArticleDOI

Distinct cathepsins control necrotic cell death mediated by pyroptosis inducers and lysosome-destabilizing agents

TL;DR: Evidence is presented that cathepsin C-deficiency and CA-074-Me block LLOMe killing in a distinct and cell type-specific fashion and indicates that a proteolytic cascade, involving cathepsypsins C and D, controls LLome-mediated necrosis.
Journal ArticleDOI

Chloroquine exerts neuroprotection following traumatic brain injury via suppression of inflammation and neuronal autophagic death

TL;DR: In vivo evidence is provided that CQ may exert neuroprotective effects following TBI, in attenuating brain edema and improving neurological functioning, by reducing the damaging consequences of neuronal autophagy and cerebral inflammation.
References
More filters
Journal ArticleDOI

Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation.

TL;DR: The extent of tissue-PCD revealed by this method is considerably greater than apoptosis detected by nuclear morphology, and thus opens the way for a variety of studies.
Journal ArticleDOI

The Release of Cytochrome c from Mitochondria: A Primary Site for Bcl-2 Regulation of Apoptosis

TL;DR: In a cell-free apoptosis system, mitochondria spontaneously released cytochrome c, which activated DEVD-specific caspases, leading to fodrin cleavage and apoptotic nuclear morphology, and Bcl-2 acts to inhibit cy tochrome c translocation, thereby blocking caspase activation and the apoptotic process.
Journal ArticleDOI

Glucocorticoid-induced thymocyte apoptosis is associated with endogenous endonuclease activation

A. H. Wyllie
- 10 Apr 1980 - 
TL;DR: It is shown here that this morphological change is closely associated with excision of nucleosome chains from nuclear chromatin, apparently through activation of an intracellular, but non-lysosomal, endonuclease.
Journal ArticleDOI

Molecular characterization of mitochondrial apoptosis-inducing factor

TL;DR: The identification and cloning of an apoptosis-inducing factor, AIF, which is sufficient to induce apoptosis of isolated nuclei is reported, indicating that AIF is a mitochondrial effector of apoptotic cell death.
Journal ArticleDOI

Mitochondrial Membrane Permeabilization in Cell Death

TL;DR: Once MMP has been induced, it causes the release of catabolic hydrolases and activators of such enzymes (including those of caspases) from mitochondria, meaning that mitochondria coordinate the late stage of cellular demise.
Related Papers (5)