scispace - formally typeset
Journal ArticleDOI

High-performance Ge-on-Si photodetectors

TLDR
In this article, the authors summarized the major developments in Ge-on-Si photodetectors, including epitaxial growth and strain engineering, free-space and waveguide-integrated devices, as well as recent progress in Geon-On-Si avalanche photodets.
Abstract
The past decade has seen rapid progress in research into high-performance Ge-on-Si photodetectors. Owing to their excellent optoelectronic properties, which include high responsivity from visible to near-infrared wavelengths, high bandwidths and compatibility with silicon complementary metal–oxide–semiconductor circuits, these devices can be monolithically integrated with silicon-based read-out circuits for applications such as high-performance photonic data links and infrared imaging at low cost and low power consumption. This Review summarizes the major developments in Ge-on-Si photodetectors, including epitaxial growth and strain engineering, free-space and waveguide-integrated devices, as well as recent progress in Ge-on-Si avalanche photodetectors. Owing to their excellent optoelectronic properties, Ge-on-Si photodetector can be monolithically integrated with silicon-based read-out circuits for applications such as high-performance photonic data links and low-cost infrared imaging at low power consumption. This Review covers the major developments in Ge-on-Si photodetectors, including epitaxial growth and strain engineering, free-space and waveguide-integrated devices, as well as recent progress in Ge-on-Si avalanche photodetectors.

read more

Citations
More filters
Journal ArticleDOI

Alternative Plasmonic Materials: Beyond Gold and Silver

TL;DR: This review explores different material classes for plasmonic and metamaterial applications, such as conventional semiconductors, transparent conducting oxides, perovskiteOxides, metal nitrides, silicides, germanides, and 2D materials such as graphene.
Journal ArticleDOI

Mid-infrared photonics in silicon and germanium

TL;DR: In this article, the authors proposed a method to extend group IV photonics from near-infrared to midinfrared wavelengths using on-chip CMOS optoelectronic systems for use in spectroscopy, chemical and biological sensing, and free space communications.
Journal ArticleDOI

Chip-integrated ultrafast graphene photodetector with high responsivity

TL;DR: In this article, a chip-integrated graphene photodetector with a high responsivity of over 0.1 A W−1, high speed and broad spectral bandwidth is realized through enhanced absorption due to near-field coupling.
Journal ArticleDOI

Nonreciprocal Light Propagation in a Silicon Photonic Circuit

TL;DR: A metallic-silicon waveguide system in which the optical potential is modulated along the length of the waveguide such that nonreciprocal light propagation is obtained on a silicon photonic chip is designed and fabricated.
References
More filters
Journal ArticleDOI

Kinetic pathway in Stranski-Krastanov growth of Ge on Si(001).

TL;DR: The transition from 2D to 3D growth of Ge on Si(001) has been investigated with scanning tunneling microscope and a metastable 3D cluster phase with well-defined structure and shape is found.
Journal ArticleDOI

High-quality Ge epilayers on Si with low threading-dislocation densities

TL;DR: In this paper, a two-step ultrahigh vacuum/chemical-vapor-deposition process followed by cyclic thermal annealing was proposed for making high-quality epilayers on Si.
Journal ArticleDOI

Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna

TL;DR: In this paper, the authors exploit the idea of a half-wave Hertz dipole antenna at near-infrared wavelengths to concentrate radiation into a nanometre-scale germanium photodetector.
Journal ArticleDOI

Controlling threading dislocation densities in Ge on Si using graded SiGe layers and chemical-mechanical polishing

TL;DR: In this paper, a method of controlling threading dislocation densities in Ge on Si involving graded SiGe layers and chemical-mechanical polishing (CMP) is presented.
Journal ArticleDOI

Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain-bandwidth product

TL;DR: In this paper, the authors reported a monolithically grown germanium/silicon avalanche photodetector with a gain-bandwidth product of 340 GHz, a keff of 0.09 and a sensitivity of −28 dBm at 10Gb s−1.
Related Papers (5)