scispace - formally typeset
Open AccessJournal ArticleDOI

Human intestinal microbiota composition is associated with local and systemic inflammation in obesity

Reads0
Chats0
TLDR
The relationship between microbiota composition, intestinal permeability, and inflammation in nonobese and obese subjects was investigated and it was found that gut microbiota composition and inflammation are related to obesity.
Abstract
Objective Intestinal microbiota have been suggested to contribute to the development of obesity, but the mechanism remains elusive. The relationship between microbiota composition, intestinal permeability, and inflammation in nonobese and obese subjects was investigated. Design and Methods Fecal microbiota composition of 28 subjects (BMI 18.6-60.3 kg m−2) was analyzed by a phylogenetic profiling microarray. Fecal calprotectin and plasma C-reactive protein levels were determined to evaluate intestinal and systemic inflammation. Furthermore, HbA1c, and plasma levels of transaminases and lipids were analyzed. Gastroduodenal, small intestinal, and colonic permeability were assessed by a multisaccharide test. Results Based on microbiota composition, the study population segregated into two clusters with predominantly obese (15/19) or exclusively nonobese (9/9) subjects. Whereas intestinal permeability did not differ between clusters, the obese cluster showed reduced bacterial diversity, a decreased Bacteroidetes/Firmicutes ratio, and an increased abundance of potential proinflammatory Proteobacteria. Interestingly, fecal calprotectin was only detectable in subjects within the obese microbiota cluster (n = 8/19, P = 0.02). Plasma C-reactive protein was also increased in these subjects (P = 0.0005), and correlated with the Bacteroidetes/Firmicutes ratio (rs = −0.41, P = 0.03). Conclusions Intestinal microbiota alterations in obese subjects are associated with local and systemic inflammation, suggesting that the obesity-related microbiota composition has a proinflammatory effect.

read more

Citations
More filters
Journal ArticleDOI

Coprophagy prevention alters microbiome, metabolism, neurochemistry, and cognitive behavior in a small mammal.

TL;DR: Coprophagy contributes to stabilizing the gut microbiota, promoting microbial metabolism, maintaining host energy balance and, consequently, altering cognitive performance, and the functional importance of coprophagy behavior and interactions between the gut microbiome, energy metabolism, and neurological function is identified.
Journal ArticleDOI

Acute Oral Administration of Single-Walled Carbon Nanotubes Increases Intestinal Permeability and Inflammatory Responses: Association with the Changes in Gut Microbiota in Mice.

TL;DR: Analysis of gut microbiota composition using 16S rRNA gene sequencing approach reveals that acute oral administration of SWCNTs induces significant shifts of the predominant microbe phyla from Firmicutes to Bacteroidetes and increases abundance of proinflammatory bacteria Alitipes_uncultured_bacterium and Lachnospiraceae bacterium A4.
Journal ArticleDOI

The Gut Bacteria-Driven Obesity Development

TL;DR: Gut microbiota manipulation has already become a new target for both prevention and treatment of obesity, and research in this field has just started and many of the available data are still conflicting.
Journal ArticleDOI

Cordyceps cicadae polysaccharides ameliorated renal interstitial fibrosis in diabetic nephropathy rats by repressing inflammation and modulating gut microbiota dysbiosis

TL;DR: Evidence is provided that CCP exerted a beneficial effect on tubulointerstitial fibrosis in DN rats by possibly suppressing the inflammatory response and modulating gut microbiota dysbiosis, via blocking the TLR4/NF-κB and TGF-β1/Smad signaling pathway.
Journal ArticleDOI

Gut Microbiome Modulation Based on Probiotic Application for Anti-Obesity: A Review on Efficacy and Validation.

TL;DR: This review focuses on obesity and gut microbiota interactions and further develops the mechanism of the gut microbiome approach related to human obesity, and highlights several alternative diet treatments including dietary changes and supplementation with probiotics.
References
More filters
Journal ArticleDOI

Microbial ecology: Human gut microbes associated with obesity

TL;DR: It is shown that the relative proportion of Bacteroidetes is decreased in obese people by comparison with lean people, and that this proportion increases with weight loss on two types of low-calorie diet.
Journal ArticleDOI

Obesity alters gut microbial ecology

TL;DR: Analysis of the microbiota of genetically obese ob/ob mice, lean ob/+ and wild-type siblings, and their ob/+ mothers, all fed the same polysaccharide-rich diet, indicates that obesity affects the diversity of the gut microbiota and suggests that intentional manipulation of community structure may be useful for regulating energy balance in obese individuals.
Journal ArticleDOI

The gut microbiota as an environmental factor that regulates fat storage

TL;DR: In this article, the authors found that conventionalization of adult germ-free C57BL/6 mice with a normal microbiota harvested from the distal intestine (cecum) of conventionally raised animals produces a 60% increase in body fat content and insulin resistance within 14 days despite reduced food intake.
Related Papers (5)