scispace - formally typeset
Open AccessJournal ArticleDOI

Millimeter-Wave Cellular Wireless Networks: Potentials and Challenges

Sundeep Rangan, +2 more
- Vol. 102, Iss: 3, pp 366-385
TLDR
Measurements and capacity studies are surveyed to assess mmW technology with a focus on small cell deployments in urban environments and it is shown that mmW systems can offer more than an order of magnitude increase in capacity over current state-of-the-art 4G cellular networks at current cell densities.
Abstract
Millimeter-wave (mmW) frequencies between 30 and 300 GHz are a new frontier for cellular communication that offers the promise of orders of magnitude greater bandwidths combined with further gains via beamforming and spatial multiplexing from multielement antenna arrays. This paper surveys measurements and capacity studies to assess this technology with a focus on small cell deployments in urban environments. The conclusions are extremely encouraging; measurements in New York City at 28 and 73 GHz demonstrate that, even in an urban canyon environment, significant non-line-of-sight (NLOS) outdoor, street-level coverage is possible up to approximately 200 m from a potential low-power microcell or picocell base station. In addition, based on statistical channel models from these measurements, it is shown that mmW systems can offer more than an order of magnitude increase in capacity over current state-of-the-art 4G cellular networks at current cell densities. Cellular systems, however, will need to be significantly redesigned to fully achieve these gains. Specifically, the requirement of highly directional and adaptive transmissions, directional isolation between links, and significant possibilities of outage have strong implications on multiple access, channel structure, synchronization, and receiver design. To address these challenges, the paper discusses how various technologies including adaptive beamforming, multihop relaying, heterogeneous network architectures, and carrier aggregation can be leveraged in the mmW context.

read more

Citations
More filters
Proceedings Article

Q-band Indoor Propagation Modelling and Measurements for 5G

TL;DR: In this article, the authors developed a Q-band measurement system in order to investigate the indoor propagation conditions in the millimetre wave band, capable of transmitting and receiving in the 38GHz mm-wave radio band that the new generation of cellular mobile 5G networks will also utilize.
Proceedings ArticleDOI

3D Self-Motion Tracking Services: Coalescence of mmWave Beam Orientations and Phase Information

TL;DR: In this paper , a single user equipment (UE) enhancement was proposed to improve the accuracy of 3D motion tracking in the mmWave domain by exploiting multiple available propagation paths, and the authors showed that multipath may turn from friend to foe if undesired components are not suppressed sufficiently.
Journal ArticleDOI

Learn to Communicate With Neural Calibration: Scalability and Generalization

TL;DR: In this article , a scalable and generalizable neural calibration framework is proposed for future wireless system design, where a neural network is adopted to calibrate the input of conventional model-based algorithms.
Patent

Apparatus for quantized linear amplification with nonlinear amplifiers

TL;DR: An apparatus for quantized linear amplification with nonlinear amplifiers that performs a linear amplification of variable-envelope single carrier (SC) or multi-carrier (MC) bandpass signals, based on sampled and quantized versions of its complex envelope, where the quantizer generates bits that are mapped into Nm≤Nb polar components, in which the quantized symbol can be decomposed, that are modulated as Nm constant or quasi constant envelope signals and where each one is amplified by a nonlinear amplifier.
Proceedings ArticleDOI

Reducing RF resource for 5G communication networks: A spatial modulation motivated approach

TL;DR: It is revealed in this paper that SM is capable of improving the transmission data rates for 5G communication networks while maintaining an equal scale of RF resource occupancy, which therefore motivates the fruitful application of SM in 5G communications.
References
More filters
Book

Wireless Communications: Principles and Practice

TL;DR: WireWireless Communications: Principles and Practice, Second Edition is the definitive modern text for wireless communications technology and system design as discussed by the authors, which covers the fundamental issues impacting all wireless networks and reviews virtually every important new wireless standard and technological development, offering especially comprehensive coverage of the 3G systems and wireless local area networks (WLANs).
Journal ArticleDOI

Millimeter Wave Mobile Communications for 5G Cellular: It Will Work!

TL;DR: The motivation for new mm-wave cellular systems, methodology, and hardware for measurements are presented and a variety of measurement results are offered that show 28 and 38 GHz frequencies can be used when employing steerable directional antennas at base stations and mobile devices.
Journal ArticleDOI

Scaling Up MIMO: Opportunities and Challenges with Very Large Arrays

TL;DR: The gains in multiuser systems are even more impressive, because such systems offer the possibility to transmit simultaneously to several users and the flexibility to select what users to schedule for reception at any given point in time.
Journal ArticleDOI

Five disruptive technology directions for 5G

TL;DR: In this article, the authors describe five technologies that could lead to both architectural and component disruptive design changes: device-centric architectures, millimeter wave, massive MIMO, smarter devices, and native support for machine-to-machine communications.
Journal ArticleDOI

Femtocell networks: a survey

TL;DR: The technical and business arguments for femtocells are overview and the state of the art on each front is described and the technical challenges facing femtocell networks are described and some preliminary ideas for how to overcome them are given.
Related Papers (5)