scispace - formally typeset
Open AccessJournal ArticleDOI

Network-based prediction of protein interactions.

Reads0
Chats0
TLDR
It is shown that proteins tend to interact if one is similar to the other’s partners and that PPI prediction based on this principle is highly accurate and can offer mechanistic insights into disease mechanisms and complement future experimental efforts to complete the human interactome.
Abstract
Despite exceptional experimental efforts to map out the human interactome, the continued data incompleteness limits our ability to understand the molecular roots of human disease. Computational tools offer a promising alternative, helping identify biologically significant, yet unmapped protein-protein interactions (PPIs). While link prediction methods connect proteins on the basis of biological or network-based similarity, interacting proteins are not necessarily similar and similar proteins do not necessarily interact. Here, we offer structural and evolutionary evidence that proteins interact not if they are similar to each other, but if one of them is similar to the other's partners. This approach, that mathematically relies on network paths of length three (L3), significantly outperforms all existing link prediction methods. Given its high accuracy, we show that L3 can offer mechanistic insights into disease mechanisms and can complement future experimental efforts to complete the human interactome.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

A reference map of the human binary protein interactome

Katja Luck, +94 more
- 08 Apr 2020 - 
TL;DR: The utility of HuRI is demonstrated in identifying the specific subcellular roles of protein–protein interactions and in identifying potential molecular mechanisms that might underlie tissue-specific phenotypes of Mendelian diseases.
Journal ArticleDOI

Network-based prediction of drug combinations.

TL;DR: A network-based methodology to identify efficacious drug combinations for specific diseases is proposed, and it is found that successful combinations tend to target separate neighbourhoods of the disease module in the human interactome.
Journal ArticleDOI

Link prediction techniques, applications, and performance: A survey

TL;DR: Learning-based methods are covered in addition to clustering-based and information-theoretic models in a separate group, and the experimental results of similarity and some other representative approaches are tabulated and discussed.
Journal ArticleDOI

Computational network biology: Data, models, and applications

TL;DR: This review summarizes the recent developments of computational network biology, first introducing various types of biological networks and network structural properties, and then reviewing the network-based approaches, ranging from some network metrics to the complicated machine-learning methods.
References
More filters
Journal ArticleDOI

The Strength of Weak Ties

TL;DR: In this paper, it is argued that the degree of overlap of two individuals' friendship networks varies directly with the strength of their tie to one another, and the impact of this principle on diffusion of influence and information, mobility opportunity, and community organization is explored.
Journal ArticleDOI

STRING v10: protein–protein interaction networks, integrated over the tree of life

TL;DR: H hierarchical and self-consistent orthology annotations are introduced for all interacting proteins, grouping the proteins into families at various levels of phylogenetic resolution in the STRING database.
Journal ArticleDOI

A comprehensive analysis of protein–protein interactions in Saccharomyces cerevisiae

TL;DR: Examination of large-scale yeast two-hybrid screens reveals interactions that place functionally unclassified proteins in a biological context, interactions between proteins involved in the same biological function, and interactions that link biological functions together into larger cellular processes.
Journal IssueDOI

The link-prediction problem for social networks

TL;DR: Experiments on large coauthorship networks suggest that information about future interactions can be extracted from network topology alone, and that fairly subtle measures for detecting node proximity can outperform more direct measures.
Journal ArticleDOI

Network Medicine: A Network-Based Approach to Human Disease

TL;DR: Advances in this direction are essential for identifying new disease genes, for uncovering the biological significance of disease-associated mutations identified by genome-wide association studies and full-genome sequencing, and for identifying drug targets and biomarkers for complex diseases.
Related Papers (5)