scispace - formally typeset
Open AccessJournal ArticleDOI

Rapid Detection of COVID-19 Causative Virus (SARS-CoV-2) in Human Nasopharyngeal Swab Specimens Using Field-Effect Transistor-Based Biosensor.

TLDR
The FET sensor fabricated here is a highly sensitive immunological diagnostic method for COVID-19 that requires no sample pretreatment or labeling and is a promising FET biosensor for SARS-CoV-2.
Abstract
Coronavirus disease 2019 (COVID-19) is a newly emerging human infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2, previously called 2019-nCoV). Based on the rapid increase in the rate of human infection, the World Health Organization (WHO) has classified the COVID-19 outbreak as a pandemic. Because no specific drugs or vaccines for COVID-19 are yet available, early diagnosis and management are crucial for containing the outbreak. Here, we report a field-effect transistor (FET)-based biosensing device for detecting SARS-CoV-2 in clinical samples. The sensor was produced by coating graphene sheets of the FET with a specific antibody against SARS-CoV-2 spike protein. The performance of the sensor was determined using antigen protein, cultured virus, and nasopharyngeal swab specimens from COVID-19 patients. Our FET device could detect the SARS-CoV-2 spike protein at concentrations of 1 fg/mL in phosphate-buffered saline and 100 fg/mL clinical transport medium. In addition, the FET sensor successfully detected SARS-CoV-2 in culture medium (limit of detection [LOD]: 1.6 × 101 pfu/mL) and clinical samples (LOD: 2.42 × 102 copies/mL). Thus, we have successfully fabricated a promising FET biosensor for SARS-CoV-2; our device is a highly sensitive immunological diagnostic method for COVID-19 that requires no sample pretreatment or labeling.

read more

Citations
More filters
Proceedings ArticleDOI

Clinical validation of SERS metasurface SARS-CoV-2 biosensor

TL;DR: In this article , a surface-enhanced Raman spectroscopy (SERS) metasurface optimized with genetic algorithm (GA) was used to detect SARS-CoV-2 directly using unprocessed saliva samples.
Journal ArticleDOI

Monitoring Coronavirus Disease 2019: A Review of Available Diagnostic Tools.

TL;DR: In this paper, the authors summarized the novel diagnostic tools that are currently available for coronavirus, including imaging examinations and laboratory medicine by next-generation sequencing (NGS), real-time reverse transcriptase-polymerase chain reaction (rRT-PCR) analysis, immunoassay for COVID-19, cytokine and T cell immuno assays, biochemistry and microbiology laboratory parameters in the blood of the patients with COVID19, and a field-effect transistor-based biosensor.
Journal ArticleDOI

Parallel Potentiometric and Capacitive Response in a Water-Gate Thin Film Transistor Biosensor at High Ionic Strength.

TL;DR: In this paper, the authors show that an SnO2-based water-gate thin film transistor (WGTFT) biosensor responds to a waterborne analyte, the spike protein of the SARS-CoV-2 virus, by a parallel potentiometric and capacitive mechanism.
Journal ArticleDOI

Drift Suppression of Solution-Gated Graphene Field-Effect Transistors by Cation Doping for Sensing Platforms

TL;DR: In this paper, the authors propose doping sufficient cations to counter p-doping of GFETs prior to the measurements, which is useful for suppressing drift, thus allowing accurate estimation of the target analyte concentration.
References
More filters
Journal ArticleDOI

The rise of graphene

TL;DR: Owing to its unusual electronic spectrum, graphene has led to the emergence of a new paradigm of 'relativistic' condensed-matter physics, where quantum relativistic phenomena can now be mimicked and tested in table-top experiments.
Journal ArticleDOI

A pneumonia outbreak associated with a new coronavirus of probable bat origin

TL;DR: Identification and characterization of a new coronavirus (2019-nCoV), which caused an epidemic of acute respiratory syndrome in humans in Wuhan, China, and it is shown that this virus belongs to the species of SARSr-CoV, indicates that the virus is related to a bat coronav virus.
Journal ArticleDOI

A new coronavirus associated with human respiratory disease in China.

TL;DR: Phylogenetic and metagenomic analyses of the complete viral genome of a new coronavirus from the family Coronaviridae reveal that the virus is closely related to a group of SARS-like coronaviruses found in bats in China.
Related Papers (5)