scispace - formally typeset
Open AccessJournal ArticleDOI

Rapid Detection of COVID-19 Causative Virus (SARS-CoV-2) in Human Nasopharyngeal Swab Specimens Using Field-Effect Transistor-Based Biosensor.

TLDR
The FET sensor fabricated here is a highly sensitive immunological diagnostic method for COVID-19 that requires no sample pretreatment or labeling and is a promising FET biosensor for SARS-CoV-2.
Abstract
Coronavirus disease 2019 (COVID-19) is a newly emerging human infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2, previously called 2019-nCoV). Based on the rapid increase in the rate of human infection, the World Health Organization (WHO) has classified the COVID-19 outbreak as a pandemic. Because no specific drugs or vaccines for COVID-19 are yet available, early diagnosis and management are crucial for containing the outbreak. Here, we report a field-effect transistor (FET)-based biosensing device for detecting SARS-CoV-2 in clinical samples. The sensor was produced by coating graphene sheets of the FET with a specific antibody against SARS-CoV-2 spike protein. The performance of the sensor was determined using antigen protein, cultured virus, and nasopharyngeal swab specimens from COVID-19 patients. Our FET device could detect the SARS-CoV-2 spike protein at concentrations of 1 fg/mL in phosphate-buffered saline and 100 fg/mL clinical transport medium. In addition, the FET sensor successfully detected SARS-CoV-2 in culture medium (limit of detection [LOD]: 1.6 × 101 pfu/mL) and clinical samples (LOD: 2.42 × 102 copies/mL). Thus, we have successfully fabricated a promising FET biosensor for SARS-CoV-2; our device is a highly sensitive immunological diagnostic method for COVID-19 that requires no sample pretreatment or labeling.

read more

Citations
More filters
Journal ArticleDOI

High-intensity vector signals for detecting SARS-CoV-2 RNA using CRISPR/Cas13a couple with stabilized graphene field-effect transistor

TL;DR: Wang et al. as discussed by the authors reported a collaborative system of CRISPR-Cas13a coupling with the stabilized graphene field effect transistor, providing high-intensity vector signals for detecting SARS-CoV-2.
Journal ArticleDOI

A Concise Review of Baseline Facts of SARS-CoV-2 for Interdisciplinary Research

TL;DR: An overview of baseline/key facts of SARS-CoV-2 mingled with current status and strategies is presented in a simple, straight forward and coherent manner and attempts to integrate and arrange the key facts at the interface of chemistry and biology.
Journal ArticleDOI

Advancement and Challenges of Biosensing Using Field Effect Transistors

G. Thriveni, +1 more
- 01 Aug 2022 - 
TL;DR: This review has explored all the challenges of the sensing system and how these are tackled with innovative approaches, techniques and device modifications that have also raised the detection sensitivity and specificity.
Journal ArticleDOI

Specific anti-SARS-CoV-2 S1 IgY-scFv is a promising tool for recognition of the virus

TL;DR: In this paper , a single chain variable fragment antibody (IgY-scFv) was generated by using phage display technology and showed high binding sensitivity and capacity to S 1 protein of SARS-CoV-2, and the minimum detectable antigen S1 protein concentration was 6 ng/L.
References
More filters
Journal ArticleDOI

The rise of graphene

TL;DR: Owing to its unusual electronic spectrum, graphene has led to the emergence of a new paradigm of 'relativistic' condensed-matter physics, where quantum relativistic phenomena can now be mimicked and tested in table-top experiments.
Journal ArticleDOI

A pneumonia outbreak associated with a new coronavirus of probable bat origin

TL;DR: Identification and characterization of a new coronavirus (2019-nCoV), which caused an epidemic of acute respiratory syndrome in humans in Wuhan, China, and it is shown that this virus belongs to the species of SARSr-CoV, indicates that the virus is related to a bat coronav virus.
Journal ArticleDOI

A new coronavirus associated with human respiratory disease in China.

TL;DR: Phylogenetic and metagenomic analyses of the complete viral genome of a new coronavirus from the family Coronaviridae reveal that the virus is closely related to a group of SARS-like coronaviruses found in bats in China.
Related Papers (5)