scispace - formally typeset
Open AccessJournal ArticleDOI

Reciprocal transcriptional regulation of Pou5f1 and Sox2 via the Oct4/Sox2 complex in embryonic stem cells.

TLDR
A positive and potentially self-reinforcing regulatory loop that maintains Pou5f1 and Sox2 expression via the Oct4/Sox2 complex in pluripotent cells is uncovered.
Abstract
Embryonic stem cells (ESCs) are pluripotent cells that can either self-renew or differentiate into many cell types. Oct4 and Sox2 are transcription factors essential to the pluripotent and self-renewing phenotypes of ESCs. Both factors are upstream in the hierarchy of the transcription regulatory network and are partners in regulating several ESC-specific genes. In ESCs, Sox2 is transcriptionally regulated by an enhancer containing a composite sox-oct element that Oct4 and Sox2 bind in a combinatorial interaction. It has previously been shown that Pou5f1, the Oct4 gene, contains a distal enhancer imparting specific expression in both ESCs and preimplantation embryos. Here, we identify a composite sox-oct element within this enhancer and show that it is involved in Pou5f1 transcriptional activity in ESCs. In vitro experiments with ESC nuclear extracts demonstrate that Oct4 and Sox2 interact specifically with this regulatory element. More importantly, by chromatin immunoprecipitation assay, we establish that both Oct4 and Sox2 bind directly to the composite sox-oct elements in both Pou5f1 and Sox2 in living mouse and human ESCs. Specific knockdown of either Oct4 or Sox2 by RNA interference leads to the reduction of both genes' enhancer activities and endogenous expression levels in addition to ESC differentiation. Our data uncover a positive and potentially self-reinforcing regulatory loop that maintains Pou5f1 and Sox2 expression via the Oct4/Sox2 complex in pluripotent cells.

read more

Citations
More filters
Journal ArticleDOI

Pluripotency governed by Sox2 via regulation of Oct3/4 expression in mouse embryonic stem cells

TL;DR: The results indicate that the essential function of Sox2 is to stabilize ES cells in a pluripotent state by maintaining the requisite level of Oct3/4 expression.
Journal ArticleDOI

Control of the Embryonic Stem Cell State

TL;DR: This work has provided insights into the transcriptional control of embryonic stem cell state, including the regulatory circuitry underlying pluripotency and uncovered fundamental mechanisms that control mammalian gene expression, connect gene expression to chromosome structure, and contribute to human disease.
References
More filters
Journal ArticleDOI

Embryonic Stem Cell Lines Derived from Human Blastocysts

TL;DR: Human blastocyst-derived, pluripotent cell lines are described that have normal karyotypes, express high levels of telomerase activity, and express cell surface markers that characterize primate embryonic stem cells but do not characterize other early lineages.
Journal ArticleDOI

Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei

TL;DR: A procedure for preparing extracts from nuclei of human tissue culture cells that directs accurate transcription initiation in vitro from class II promoters, including tRNA and Ad 2 VA, is developed.
Journal ArticleDOI

A System for Stable Expression of Short Interfering RNAs in Mammalian Cells

TL;DR: It is shown that siRNA expression mediated by this vector causes efficient and specific down-regulation of gene expression, resulting in functional inactivation of the targeted genes.
Journal ArticleDOI

Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells.

TL;DR: A role is established for Oct-3/4 as a master regulator of pluripotency that controls lineage commitment and the sophistication of critical transcriptional regulators is illustrated and the consequent importance of quantitative analyses are illustrated.
Journal ArticleDOI

Formation of Pluripotent Stem Cells in the Mammalian Embryo Depends on the POU Transcription Factor Oct4

TL;DR: It is reported that the activity of Oct4 is essential for the identity of the pluripotential founder cell population in the mammalian embryo and also determines paracrine growth factor signaling from stem cells to the trophectoderm.
Related Papers (5)