scispace - formally typeset
Journal ArticleDOI: 10.1016/J.JHAZMAT.2020.124257

Urea-enhanced phytoremediation of cadmium with willow in pyrene and cadmium contaminated soil.

05 Mar 2021-Journal of Hazardous Materials (Elsevier)-Vol. 405, pp 124257-124257
Abstract: The phytoremediation of cadmium (Cd) and pyrene (PYR) in agricultural soil with willow was investigated by carrying out a pot-culture experiment in a greenhouse. The soil was incubated with urea 60 days before it was used for this experiment. The concentrations of Cd and PYR in soil and willow, the bioconcentration and transfer factors, the physiological and biochemical responses, and plant biomass production were determined at the end of the experiment. The phytoremediation with willow based on urea application was effective for enhancing the phytoremediation of Cd and PYR contaminated soil. Urea application did not affect the available Cd but increased the accumulation of soil Cd and the plant biomass of different parts of the willow. The removal rate (77.1-89.5%) of PYR in soil was not significantly affected although urea application decreased the accumulation of PYR in willow root and bark. Urea application significantly promoted the uptake of chlorophyll, carotenoid and malondialdehyde by willow leaves. The results of this study will provide scientific information for the effective phytoremediation of Cd in Cd and PYR contaminated soil.

... read more

Topics: Phytoremediation (57%), Soil contamination (51%)

9 results found

Journal ArticleDOI: 10.1016/J.JENVMAN.2021.112805
Abstract: Soil contamination by pyrene has increased over the years due to human-related activities, urgently demanding for remediation approaches to ensure human and environment safety. Within this frame, phytoremediation has been successfully applied over the years due to its green and cost-effectiveness features. The scope of this review includes the main phytoremediation mechanisms correlated with the removal of pyrene from contaminated soils and sediments to highlight the impact of different parameters and the supplement of additives on the efficiency of the treatment. Soil organic matter (SOM), plant species, aging time, environmental parameters (pH, soil oxygenation, and temperature) and bioavailability are among the main parameters affecting pyrene removal through phytoremediation. Phytoextraction only accounts for a small part of the entire phytoremediation process, but the addition of surfactants and chelating agents in planted soils could increase pyrene accumulation in plant tissues by 20% as a consequence of the increased pyrene bioavailability. Rhizodegradation is the main phytoremediation mechanism involved due to the activity of bacteria capable of degrading pyrene in the root area. Inoculated-planted soil treatments have the potential to decrease pyrene accumulation in shoots and roots by approximately 30 and 40%, respectively, further stimulating the proliferation of pyrene-degrading bacteria in the rhizosphere. Plant-fungi symbiotic association results in an enhanced accumulation of pyrene in shoots and roots of plants as well as a higher biodegradation. Finally, pyrene removal from soil can be improved in the presence of amendments, such as natural non-ionic surfactants, biochar, and bacterial mixtures.

... read more

Topics: Pyrene (59%), Phytoremediation (58%), Environmental remediation (53%) ... show more

4 Citations

Journal ArticleDOI: 10.1016/J.JHAZMAT.2021.125884
Zou Kaijian1, Junfu Wei1, Di Wang1, Zhiyun Kong1  +2 moreInstitutions (1)
Abstract: The acid-extractable fraction Cd(II) in soil accumulates easily in organisms, migrates and transforms in the ecological environment, which has posed potential health risks to human. This study found that the acid-extractable fraction Cd(II) in soil could be released rapidly into water at very low Cd2+ concentration. Carboxylated polypropylene (PP-g-AA) fibers-ball with high selectivity as adsorbent was used in the Cd(II) contaminated soil-water system. It could remove promptly trace Cd2+ from water even in the presence of interfering metal ions. Moreover, Cd(II) desorbed from soil to water could be continuously adsorbed by PP-g-AA fibers-ball, which kept the Cd2+ concentration always at a low level. This forms a dynamic equilibrium of rapid release- selective adsorption toward the acid-extractable fraction Cd(II) in the soil-water system. Here, the migratory pathway for the acid-extractable fraction Cd(II) to be released from contaminated soil to water and adsorbed simultaneously on the surface of PP-g-AA fibers-ball was established. This work offers a novel protocol that can remove more than 90% of the acid-extractable fraction Cd(II) from contaminated soil within 12 h, thereby contributes better to mitigate the risk of Cd(II) from soil to the food chain without changing the physical and chemical properties of soil.

... read more

1 Citations

Open accessJournal ArticleDOI: 10.1016/J.JHAZMAT.2021.127875
Yuchen Kang1, Jiaxin Liu1, Li Yang1, Na Li1  +3 moreInstitutions (1)
Abstract: The gap between the current serious soil heavy metal (HM) contamination and the low efficiency of soil remediation threatens human health. The aim of this study was to propose a method to improve the efficiency of phytoremediation by exogenous rutin application and explain the potential mechanism. A series of rutin treatments were designed to evaluate the biomass, cadmium (Cd) accumulation and physiological and biochemical responses of Amaranthus hypochondriacus under different Cd stresses. The results showed a decline in cell membrane damage with rutin application, and more Cd ions were immobilized in the cell wall than in the vacuole, resulting in an increase in Cd tolerance in plants. The addition of rutin caused significant effects on the synthesis of glutathione (GSH), including the advancement of the conversion of GSH to phytochelatins (PCs). Among them, PC2 and PC3 in the leaves contributed the most to the high accumulation of Cd. Overall, the phytoremediation efficiency and phytoextraction amount of Amaranthus hypochondriacus with rutin application were improved maximumly by 219.48% and 260.00%, respectively. This study provides a constructive approach for improving the efficiency of phytoremediation by foliar application of flavonoids and contributes to the further development of soil remediation in Cd-contaminated fields. Availability of data and materials The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request

... read more

Topics: Amaranthus hypochondriacus (58%), Rutin (54%), Phytoremediation (53%)

Journal ArticleDOI: 10.1007/S11356-021-16806-X
Lizhu Yuan1, Penghong Guo2, Shuhai Guo3, Shuhai Guo1  +2 moreInstitutions (3)
Abstract: In order to explore the influence of C14 alkane on physiological stress responses, mineral nutrient elements uptake, cadmium (Cd) transfer, and uptake characteristics of Lolium perenne L. (ryegrass), a series of pot trials were conducted which included a moderate level of Cd (2.182 mg·kg−1) without (control) and with five levels of C14 alkane (V/m, 0.1%, 0.2%, 0.5%, 1%, 2%). Biomass and Cd content in the root and shoot, chlorophyll content, antioxidant enzymes activity, and mineral nutrient elements in the shoot of ryegrass were determined at the end of the experiment. The results indicated that Cd uptake significantly elevated at 0.1% C14 alkane treatment, then gradually decreased with the increase of C14 alkane concentration. Compared with the control, chlorophyll content was significantly suppressed and malondialdehyde (MDA) concentration obviously increased. Superoxide dismutase (SOD) activity and catalase (CAT) activity significantly increased to prevent the C14 alkane stress. With the increase of C14 alkane, the Mn concentration gradually increased; Mg and Fe significantly decreased. Correlation analysis showed that Mn was positively correlated with SOD (with the exception of 2% treatment) and CAT (p < 0.01), and negatively correlated with Cd uptake (p < 0.01). It implied that the increase of Mn induced by C14 alkane stress was an important reason for the decrease of Cd uptake.

... read more


57 results found

Open accessBook
15 Jun 2021-
Abstract: Respected and known worldwide in the field for his research in plant nutrition, Dr. Horst Marschner authored two editions of Mineral Nutrition of Higher Plants. His research greatly advanced the understanding of rhizosphere processes and trace element uptake by plants and he published extensively in a variety of plant nutrition areas. While doing agricultural research in West Africa in 1996, Dr. Marschner contracted malaria and passed away, and until now this legacy title went unrevised. Despite the passage of time, it remains the definitive reference on plant mineral nutrition. Great progress has been made in the understanding of various aspects of plant nutrition and in recent years the view on the mode of action of mineral nutrients in plant metabolism and yield formation has shifted. Nutrients are not only viewed as constituents of plant compounds (constructing material), enzymes and electron transport chains but also as signals regulating plant metabolism via complex signal transduction networks. In these networks, phytohormones also play an important role. Principles of the mode of action of phytohormones and examples of the interaction of hormones and mineral nutrients on source and sink strength and yield formation are discussed in this edition. Phytohormones have a role as chemical messengers (internal signals) to coordinate development and responses to environmental stimuli at the whole plant level. These and many other molecular developments are covered in the long-awaited new edition. Esteemed plant nutrition expert and Horst Marschner's daughter, Dr. Petra Marschner, together with a team of key co-authors who worked with Horst Marschner on his research, now present a thoroughly updated and revised third edition of Marschner's Mineral Nutrition of Higher Plants, maintaining its value for plant nutritionists worldwide. Key Features * Second Edition of this established text * Structure of the book remains the same * 50% of the reference and 50% of the figures and tables have been replaced * Whole of the text has been revised * Coverage of plant (soil interactions has been increased considerably)

... read more

2,451 Citations

Open accessJournal ArticleDOI: 10.1371/JOURNAL.PONE.0109973
Sofia Khan1, Dario Greco1, Dario Greco2, Kyriaki Michailidou3  +158 moreInstitutions (54)
12 Nov 2014-PLOS ONE
Abstract: Genetic variations, such as single nucleotide polymorphisms (SNPs) in microRNAs (miRNA) or in the miRNA binding sites may affect the miRNA dependent gene expression regulation, which has been implicated in various cancers, including breast cancer, and may alter individual susceptibility to cancer. We investigated associations between miRNA related SNPs and breast cancer risk. First we evaluated 2,196 SNPs in a case-control study combining nine genome wide association studies (GWAS). Second, we further investigated 42 SNPs with suggestive evidence for association using 41,785 cases and 41,880 controls from 41 studies included in the Breast Cancer Association Consortium (BCAC). Combining the GWAS and BCAC data within a meta-analysis, we estimated main effects on breast cancer risk as well as risks for estrogen receptor (ER) and age defined subgroups. Five miRNA binding site SNPs associated significantly with breast cancer risk: rs1045494 (odds ratio (OR) 0.92; 95% confidence interval (CI): 0.88-0.96), rs1052532 (OR 0.97; 95% CI: 0.95-0.99), rs10719 (OR 0.97; 95% CI: 0.94-0.99), rs4687554 (OR 0.97; 95% CI: 0.95-0.99, and rs3134615 (OR 1.03; 95% CI: 1.01-1.05) located in the 3' UTR of CASP8, HDDC3, DROSHA, MUSTN1, and MYCL1, respectively. DROSHA belongs to miRNA machinery genes and has a central role in initial miRNA processing. The remaining genes are involved in different molecular functions, including apoptosis and gene expression regulation. Further studies are warranted to elucidate whether the miRNA binding site SNPs are the causative variants for the observed risk effects.

... read more

Topics: MiRNA binding (70%), Breast cancer (55%), Genome-wide association study (52%) ... show more

679 Citations

Journal ArticleDOI: 10.1016/J.CHEMOSPHERE.2004.01.037
Yanzheng Gao1, Lizhong Zhu1Institutions (1)
01 Jun 2004-Chemosphere
Abstract: Uptake, accumulation and translocation of phenanthrene and pyrene by 12 plant species grown in various treated soils were comparatively investigated. Plant uptake and accumulation of phenanthrene and pyrene were correlated with their soil concentrations and plant compositions. Root or shoot accumulation of phenanthrene and pyrene in contaminated soils was elevated with the increase of their soil concentrations. Significantly positive correlations were shown between root concentrations or root concentration factors (RCFs) of phenanthrene and pyrene and root lipid contents. The RCFs of phenanthrene and pyrene for plants grown in contaminated soils with initial phenanthrene concentration of 133 mgkg(-1) and pyrene of 172 mgkg(-1) were 0.05-0.67 and 0.23-4.44, whereas the shoot concentration factors of these compounds were 0.006-0.12 and 0.004-0.12, respectively. For the same soil-plant treatment, shoot concentrations and concentration factors of phenanthrene and pyrene were generally much lower than root. Translocations of phenanthrene and pyrene from shoots to roots were undetectable. However, transport of these compounds from roots to shoots usually was the major pathway of shoot accumulation. Plant off-take of phenanthrene and pyrene only accounted for less than 0.01% of dissipation enhancement for phenanthrene and 0.24% for pyrene in planted versus unplanted control soils, whereas plant-promoted biodegradation was the predominant contribution of remediation enhancement of soil phenanthrene and pyrene in the presence of vegetation.

... read more

Topics: Phenanthrene (60%), Pyrene (59%)

424 Citations

Open accessJournal ArticleDOI: 10.1038/SREP44163
15 Mar 2017-Scientific Reports
Abstract: Scientific Reports 6: Article number: 38275; published online: 08 December 2016; updated: 15 March 2017 The original version of this Article contained errors in the spelling of the authors Alessandra Tammaro, Jesper Kers, Diba Emal, Ingrid Stroo, Gwendoline J. D. Teske, Loes M. Butter, Nike Claessen, Jeffrey Damman, Marc Derive, Gerjan J.

... read more

368 Citations

Journal ArticleDOI: 10.1021/ES0017561
Cary T. Chiou1, Guangyao Sheng1, Milton Manes2Institutions (2)
Abstract: In dealing with the passive transport of organic contaminants from soils to plants (including crops), a partition-limited model is proposed in which (i) the maximum (equilibrium) concentration of a contaminant in any location in the plant is determined by partition equilibrium with its concentration in the soil interstitial water, which in turn is determined essentially by the concentration in the soil organic matter (SOM) and (ii) the extent of approach to partition equilibrium, as measured by the ratio of the contaminant concentrations in plant water and soil interstitial water, αpt (≤ 1), depends on the transport rate of the contaminant in soil water into the plant and the volume of soil water solution that is required for the plant contaminant level to reach equilibrium with the external soil-water phase. Through reasonable estimates of plant organic-water compositions and of contaminant partition coefficients with various plant components, the model accounts for calculated values of αpt in several pu...

... read more

Topics: Soil organic matter (63%), Soil water (60%), Water content (57%) ... show more

285 Citations