scispace - formally typeset
Open AccessJournal ArticleDOI

Visualizing Strain-Induced Pseudomagnetic Fields in Graphene through an hBN Magnifying Glass.

Reads0
Chats0
TLDR
This work reports on a method to generate and characterize PMFs in a graphene membrane supported on nanopillars and quantifies the strain-induced PMF through the PLLs spectra observed in scanning tunneling spectroscopy.
Abstract
Graphene’s remarkable properties are inherent to its two-dimensional honeycomb lattice structure. Its low dimensionality, which makes it possible to rearrange the atoms by applying an external force, offers the intriguing prospect of mechanically controlling the electronic properties. In the presence of strain, graphene develops a pseudomagnetic field (PMF) that reconstructs the band structure into pseudo Landau levels (PLLs). However, a feasible route to realizing, characterizing and controlling PMFs is still lacking. Here we report on a method to generate and characterize PMFs in a graphene membrane supported on nanopillars. A direct measure of the local strain is achieved by using the magnifying effect of the moire pattern formed against a hexagonal boron nitride substrate under scanning tunneling microscopy. We quantify the strain-induced PMF through the PLLs spectra observed in scanning tunneling spectroscopy. This work provides a pathway to strain induced engineering and electro-mechanical graphene-...

read more

Citations
More filters
Journal ArticleDOI

Graphene bilayers with a twist

TL;DR: In this article, the magic-angle twisted bilayer bilayer graphene has been shown to have properties that are sensitive to carrier density and to controllable environmental factors such as the proximity of nearby gates and twist-angle variation.
Journal ArticleDOI

Strain Engineering of 2D Materials: Issues and Opportunities at the Interface

TL;DR: These advances highlight how the strain or strain-coupled applications of 2D materials rely on the interfacial properties, essentially shear and adhesion, and finally offer direct guidelines for deterministic design of mechanical strains into 2D material for ultrathin semiconductor applications.
Journal ArticleDOI

Electronic and optical properties of strained graphene and other strained 2D materials: a review.

TL;DR: This review presents the state of the art in strain and ripple-induced effects on the electronic and optical properties of graphene by providing the crystallographic description of mechanical deformations, as well as the diffraction pattern for different kinds of representative deformation fields.
Journal ArticleDOI

van der Waals heterostructures combining graphene and hexagonal boron nitride

TL;DR: A detailed overview of the physics and device properties of van der Waals heterostructures consisting of graphene and hexagonal boron nitride can be found in this article, including the integer and fractional quantum Hall effects, novel plasmonic states and emergent moire superlattices.
Journal ArticleDOI

Electronic and optical properties of strained graphene and other strained 2D materials: a review

TL;DR: In this article, a review of the state of the art in strain and ripple-induced effects on the electronic and optical properties of graphene is presented, with a focus on the Raman spectrum.
References
More filters
Journal ArticleDOI

The electronic properties of graphene

TL;DR: In this paper, the basic theoretical aspects of graphene, a one-atom-thick allotrope of carbon, with unusual two-dimensional Dirac-like electronic excitations, are discussed.
Journal ArticleDOI

Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene

TL;DR: Graphene is established as the strongest material ever measured, and atomically perfect nanoscale materials can be mechanically tested to deformations well beyond the linear regime.
Journal ArticleDOI

Boron nitride substrates for high-quality graphene electronics

TL;DR: Graphene devices on h-BN substrates have mobilities and carrier inhomogeneities that are almost an order of magnitude better than devices on SiO(2).
Journal ArticleDOI

Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems

Andrea C. Ferrari, +68 more
- 04 Mar 2015 - 
TL;DR: An overview of the key aspects of graphene and related materials, ranging from fundamental research challenges to a variety of applications in a large number of sectors, highlighting the steps necessary to take GRMs from a state of raw potential to a point where they might revolutionize multiple industries are provided.
Journal ArticleDOI

Energy gaps and a zero-field quantum Hall effect in graphene by strain engineering

TL;DR: In this paper, it was shown that a designed strain aligned along three main crystallographic directions induces strong gauge fields that effectively act as a uniform magnetic field exceeding 10'T, similar to the case of a topological insulator.
Related Papers (5)