scispace - formally typeset
Search or ask a question

Showing papers on "Corticosterone published in 2013"


Journal ArticleDOI
TL;DR: The 11β-HSDDs illuminate the emerging biology of intracrine control, afford important insights into human pathogenesis, and offer new tissue-restricted therapeutic avenues.
Abstract: Glucocorticoid action on target tissues is determined by the density of “nuclear” receptors and intracellular metabolism by the two isozymes of 11β-hydroxysteroid dehydrogenase (11β-HSD) which catalyze interconversion of active cortisol and corticosterone with inert cortisone and 11-dehydrocorticosterone. 11β-HSD type 1, a predominant reductase in most intact cells, catalyzes the regeneration of active glucocorticoids, thus amplifying cellular action. 11β-HSD1 is widely expressed in liver, adipose tissue, muscle, pancreatic islets, adult brain, inflammatory cells, and gonads. 11β-HSD1 is selectively elevated in adipose tissue in obesity where it contributes to metabolic complications. Similarly, 11β-HSD1 is elevated in the ageing brain where it exacerbates glucocorticoid-associated cognitive decline. Deficiency or selective inhibition of 11β-HSD1 improves multiple metabolic syndrome parameters in rodent models and human clinical trials and similarly improves cognitive function with ageing. The efficacy of inhibitors in human therapy remains unclear. 11β-HSD2 is a high-affinity dehydrogenase that inactivates glucocorticoids. In the distal nephron, 11β-HSD2 ensures that only aldosterone is an agonist at mineralocorticoid receptors (MR). 11β-HSD2 inhibition or genetic deficiency causes apparent mineralocorticoid excess and hypertension due to inappropriate glucocorticoid activation of renal MR. The placenta and fetus also highly express 11β-HSD2 which, by inactivating glucocorticoids, prevents premature maturation of fetal tissues and consequent developmental “programming.” The role of 11β-HSD2 as a marker of programming is being explored. The 11β-HSDs thus illuminate the emerging biology of intracrine control, afford important insights into human pathogenesis, and offer new tissue-restricted therapeutic avenues.

635 citations


Journal ArticleDOI
TL;DR: The factors that lead to the observed individual variation and the extent to which this variation is adaptive or non-adaptive are little known in most animals, and future studies of glucocorticoid responses in animals can focus on individual responses and their origins and significance.

267 citations


Journal ArticleDOI
TL;DR: The data indicate a marked functional heterogeneity of glucocorticoid action in the PFC and highlight a prominent role for the infralimbic GR in appropriate stress adaptation, emotional control, and mood regulation.

195 citations


Journal ArticleDOI
TL;DR: Physical, psychological or combined-stress conditions evoke a proinflammatory response in the brain and other systems, characterized by a complex release of several inflammatory mediators including cytokines, prostanoids, nitric oxide (NO) and transcription factors.

192 citations


Journal ArticleDOI
Aya Sasaki1, W. C. de Vega1, Sophie St-Cyr1, P. Pan1, Patrick O. McGowan1 
TL;DR: The data indicate that the dietary environment during development programs glucocorticoid signaling pathways in limbic areas relevant for the regulation of HPA function and anxiety behavior are relevant.

179 citations


Journal ArticleDOI
16 Apr 2013-eLife
TL;DR: It is found that acute stress increased hippocampal cell proliferation and astrocytic fibroblast growth factor 2 (FGF2) expression and rats showed enhanced fear extinction memory coincident with enhanced activation of newborn neurons after acute stress.
Abstract: A little stress can be good for you. Just over 100 years ago, psychologists Robert Yerkes and John Dodson suggested that cognitive performance improves as stress increases, although it falls off again if stress levels continue to rise. The hippocampus is a key brain region for both memory and the regulation of emotion, and is highly sensitive to the main class of stress hormones, glucocorticoids. One particular subregion of the hippocampus, the dentate gyrus, contains a high density of glucocorticoid receptors, and is also notable for being one of only two regions in the adult mammalian brain that can give rise to new neurons via a process called neurogenesis. Chronic stress is known to impair memory and to reduce neurogenesis. However, the effects of acute stress are less clear-cut: early studies suggested that it suppressed the generation of new neurons, whereas several recent studies have observed no effect. Other work has shown that acute stress increases the expression of growth factors—substances that stimulate cellular growth and proliferation—which would seem to suggest that stress could enhance neurogenesis. Now Kirby et al. have obtained further insights into the effects of acute stress on the proliferation of cells in the dentate gyrus. Exposing rats to a moderate acute stressor, namely being restrained for a few hours, led to increased neurogenesis in the dorsal, but not ventral, hippocampus. Injecting rats with the stress hormone corticosterone had the same effect. In both cases, the enhanced neurogenesis was accompanied by increased expression of a growth factor called FGF2, which is produced by glial cells called astrocytes. Intriguingly, Kirby and co-workers found that the stressed rats performed better than control animals in a memory test. Moreover, the beneficial effects were seen if the rats performed the task 2 weeks after their stressful experience, but not if they performed the task 2 days after being stressed. This is pertinent because new neurons in the dentate gyrus become functional 2 weeks after being generated, which suggests that the stress-induced increase in neurogenesis could account for the rats' improved memory. The work of Kirby and co-workers has thus identified a mechanism by which moderate acute stress could have beneficial effects on cognition. Given that acute stress can be harmful in other instances—leading, for example, to post-traumatic stress disorder—further work is required to identify the factors that determine whether a response to stress is adaptive or pathological.

172 citations


Journal ArticleDOI
TL;DR: Results show that single IN NPY can alter stress-triggered dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis and activation of central noradrenergic activity.

140 citations


Journal ArticleDOI
TL;DR: Findings reveal a novel mechanism by which stress hormones can rapidly regulate dopamine signaling and contribute to the impact of stress on drug intake.
Abstract: Stressful life events are important contributors to relapse in recovering cocaine addicts, but the mechanisms by which they influence motivational systems are poorly understood. Studies suggest that stress may “set the stage” for relapse by increasing the sensitivity of brain reward circuits to drug-associated stimuli. We examined the effects of stress and corticosterone on behavioral and neurochemical responses of rats to a cocaine prime after cocaine self-administration and extinction. Exposure of rats to acute electric footshock stress did not by itself reinstate drug-seeking behavior but potentiated reinstatement in response to a subthreshold dose of cocaine. This effect of stress was not observed in adrenalectomized animals, and was reproduced in nonstressed animals by administration of corticosterone at a dose that reproduced stress-induced plasma levels. Pretreatment with the glucocorticoid receptor antagonist RU38486 did not block the corticosterone effect. Corticosterone potentiated cocaine-induced increases in extracellular dopamine in the nucleus accumbens (NAc), and pharmacological blockade of NAc dopamine receptors blocked corticosterone-induced potentiation of reinstatement. Intra-accumbens administration of corticosterone reproduced the behavioral effects of stress and systemic corticosterone. Corticosterone treatment acutely decreased NAc dopamine clearance measured by fast-scan cyclic voltammetry, suggesting that inhibition of uptake2-mediated dopamine clearance may underlie corticosterone effects. Consistent with this hypothesis, intra-accumbens administration of the uptake2 inhibitor normetanephrine potentiated cocaine-induced reinstatement. Expression of organic cation transporter 3, a corticosterone-sensitive uptake2 transporter, was detected on NAc neurons. These findings reveal a novel mechanism by which stress hormones can rapidly regulate dopamine signaling and contribute to the impact of stress on drug intake.

121 citations


Journal ArticleDOI
TL;DR: It is shown that the dysfunction of the HPA-axis as well as the long-lasting synaptic and behavioral effects of MS can be reverted by targeting adenosine A2A receptors, providing a novel evidence for the use of adenosines A 2A receptor antagonists as potential therapy against psychopathologies.
Abstract: Maternal separation (MS) is an early life stress model that induces permanent changes in the central nervous system, impairing hippocampal long-term potentiation (LTP) and spatial working memory. There are compelling evidences for a role of hippocampal adenosine A(2A) receptors in stress-induced modifications related to cognition, thus opening a potential window for therapeutic intervention. Here, we submitted rats to MS and evaluated the long-lasting molecular, electrophysiological and behavioral impairments in adulthood. We then assessed the therapeutic potential of KW6002, a blocker of A(2A) receptors, in stress-impaired animals. We report that the blockade of A(2A) receptors was efficient in reverting the behavior, electrophysiological and morphological impairments induced by MS. In addition, this effect is associated with restoration of the hypothalamic-pituitary-adrenal axis (HPA-axis) activity, as both the plasma corticosterone levels and hippocampal glucocorticoid receptor expression pattern returned to physiological-like status after the treatment. These results reveal the involvement of A(2A) receptors in the stress-associated impairments and directly in the stress response system by showing that the dysfunction of the HPA-axis as well as the long-lasting synaptic and behavioral effects of MS can be reverted by targeting adenosine A(2A) receptors. These findings provide a novel evidence for the use of adenosine A(2A) receptor antagonists as potential therapy against psychopathologies.

117 citations


Journal ArticleDOI
TL;DR: An analysis of changes in sequence and structure of vertebrate GR and MR is reviewed, identifying changes in these receptors in skates and lobe-fined fish important in allowing aldosterone to act as an agonist at epithelial MR and glucocorticoid specificity for GR.

112 citations


Journal ArticleDOI
TL;DR: It is concluded that chronically elevated CORT is a key component of depressive effects of social defeat, and that attenuation of the CORT response at the level of the PVN, as well as extrahypothalamic forebrain regions, in PACAP-deficient mice protects from development of depressive behavior.

Journal ArticleDOI
TL;DR: The data indicated that epigenetic regulation is affected differentially in male and female PS offspring, and reveal novel potential targets for antidepressant and mood stabilizing drug treatments including PDE inhibitors and histone deacetylase (HDAC) inhibitors.

Journal ArticleDOI
TL;DR: Findings are evidence of progressive HPA axis deregulation after Aβ(25-35), which is associated with an imbalance of MR/GR ratio and a disruption of the glucocorticoid receptors nucleocytoplasmic shuttling, and suggest that elevated glucocortsicoids observed in AD could be first a consequence of amyloid toxicity.

Journal ArticleDOI
TL;DR: This data indicates that chronic psychological stress is associated with increased intestinal epithelial permeability and visceral hyperalgesia, and it is unknown whether corticosterone (CORT) plays a role in mediating alterations of epithelium permeability in response to CPS.
Abstract: Background Chronic psychological stress (CPS) is associated with increased intestinal epithelial permeability and visceral hyperalgesia. It is unknown whether corticosterone (CORT) plays a role in mediating alterations of epithelial permeability in response to CPS. Methods Male rats were subjected to 1-h water avoidance (WA) stress or subcutaneous CORT injection daily for 10 consecutive days in the presence or absence of corticoid receptor antagonist RU-486. The visceromotor response (VMR) to colorectal distension (CRD) was measured. The in situ single-pass intestinal perfusion was used to measure intestinal permeability in jejunum and colon simultaneously. Key Results We observed significant decreases in the levels of glucocorticoid receptor (GR) and tight junction proteins in the colon, but not the jejunum in stressed rats. These changes were largely reproduced by serial CORT injections in control rats and were significantly reversed by RU-486. Stressed and CORTinjected rats demonstrated a threefold increase in permeability for PEG-400 (MW) in colon, but not jejunum and significant increase in VMR to CRD, which was significantly reversed by RU-486. In addition, no differences in permeability to PEG-4000 and PEG-35 000 were detected between control and WA groups. Conclusions & Inferences Our findings indicate that CPS was associated with region-specific decrease in epithelial tight junction protein levels in the colon, increased colon epithelial permeability to low molecular weight macromolecules which were largely reproduced by CORT treatment in control rats and prevented by RU-486. These observations implicate a novel, region-specific role for CORT as a mediator of CPS-induced increased permeability to macromolecules across the colon epithelium.

Journal ArticleDOI
TL;DR: It is demonstrated that adolescent stress increased hippocampal inflammatory responses to LPS in males only, suggesting that differences in neuroinflammatory signaling do not drive the divergent affective-like behaviors.
Abstract: Both basic and clinical research indicates that females are more susceptible to stress-related affective disorders than males. One of the mechanisms by which stress induces depression is via inflammatory signaling in the brain. Stress during adolescence, in particular, can also disrupt the activation and continued development of both the hypothalamic–pituitary–adrenal (HPA) and –gonadal (HPG) axes, both of which modulate inflammatory pathways and brain regions involved in affective behavior. Therefore, we tested the hypothesis that adolescent stress differentially alters brain inflammatory mechanisms associated with affective-like behavior into adulthood based on sex. Male and female Wistar rats underwent mixed-modality stress during adolescence (PND 37–48) and were challenged with lipopolysaccharide (LPS; 250 μg/kg, i.p.) or saline 4.5 weeks later (in adulthood). Hippocampal inflammatory marker gene expression and circulating HPA and HPG axes hormone concentrations were then determined. Despite previous studies indicating that adolescent stress induces affective-like behaviors in female rats only, this study demonstrated that adolescent stress increased hippocampal inflammatory responses to LPS in males only, suggesting that differences in neuroinflammatory signaling do not drive the divergent affective-like behaviors. The sex differences in inflammatory markers were not associated with differences in corticosterone. In females that experienced adolescent stress, LPS increased circulating estradiol. Estradiol positively correlated with hippocampal microglial gene expression in control female rats, whereas adolescent stress negated this relationship. Thus, estradiol in females may potentially protect against stress-induced increases in neuroinflammation.

Journal ArticleDOI
TL;DR: The behavioral data suggest that GR deletion in Sim1-expressing neurons has no effect on anxiety or despair-like behavior under basal conditions, and it is concluded that loss of PVN GR results in severe HPA axis hyperactivity and Cushing's syndrome-like phenotype but does not affect anxiety and despair- like behaviors.
Abstract: The glucocorticoid receptor (GR) regulates hypothalamic-pituitary-adrenal (HPA) axis activity during the stress response. The paraventricular nucleus (PVN) is a major site of negative feedback to coordinate the degree of the HPA axis activity with the magnitude of the exposed stressor. To define the function of endogenous PVN GR, we used Cre-loxP technology to disrupt different GR exons in Sim1-expressing neurons of the hypothalamus. GR exon 2-deleted mice (Sim1Cre-GRe2Δ) demonstrated 43% loss of PVN GR compared with an 87% GR loss in exon 3-deleted mice (Sim1Cre-GRe3Δ). Sim1Cre-GRe3Δ mice display stunted growth at birth but develop obesity in adulthood and display impaired stress-induced glucose release. We observed elevated basal and stress-induced corticosterone levels in Sim1Cre-GRe3Δ mice, compared with control and Sim1Cre-GRe2Δ mice, and impaired dexamethasone suppression, indicating an inability to negatively regulate corticosterone secretion. Sim1Cre-GRe3Δ mice also showed increased CRH mRNA in the PVN, increased basal plasma ACTH levels, and reduced locomotor behavior. We observed no differences in Sim1Cre-GRe2Δ mice compared with control mice in any measure. Our behavioral data suggest that GR deletion in Sim1-expressing neurons has no effect on anxiety or despair-like behavior under basal conditions. We conclude that loss of PVN GR results in severe HPA axis hyperactivity and Cushing's syndrome-like phenotype but does not affect anxiety and despair-like behaviors.

Journal ArticleDOI
TL;DR: The results suggest that brain development is the critical period in which DHA deficiency leads to excessive HPA responses to stress and elevated behavioral indices of depression and anxiety in adulthood.
Abstract: Brain docosahexaenoic acid (DHA, 22:6n-3) accumulates rapidly during brain development and is essential for normal neurological function. The aim of this study was to evaluate whether brain development was the critical period in which DHA deficiency leads to dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis in response to stress later in life. Rats were exposed to an n-3 fatty acid-deficient diet or the same diet supplemented with fish oil as an n-3 fatty acid-adequate diet either throughout the preweaning period from embryo to weaning at 3 weeks old or during the postweaning period from 3 to 10 weeks old. Exposure to the n-3 fatty acid-deficient diet during the preweaning period resulted, at weaning, in a significant decrease in hypothalamic DHA levels and a reduced male offspring body weight. DHA deficiency during the preweaning period significantly increased and prolonged restraint stress-induced changes in colonic temperature and serum corticosterone levels, caused a significant increase in GABA(A) antagonist-induced heart rate changes and enhanced depressive-like behavior in the forced swimming test and anxiety-like behavior in the plus-maze test in later life. These effects were not seen in male rats fed the n-3 fatty acid-deficient diet during the postweaning period. These results suggest that brain development is the critical period in which DHA deficiency leads to excessive HPA responses to stress and elevated behavioral indices of depression and anxiety in adulthood. We propose that these effects of hypothalamic DHA deficiency during brain development may involve a GABA(A) receptor-mediated mechanism.

Journal ArticleDOI
06 Mar 2013-PLOS ONE
TL;DR: It is suggested that in addition to the commonly reported alterations in HPA axis functioning, neonatal LPS challenge is associated with a persistent change in ANS activity, associated with, and potentially contributing to, the anxiety-like phenotype.
Abstract: Neonatal exposure of rodents to an immune challenge alters a variety of behavioural and physiological parameters in adulthood. In particular, neonatal lipopolysaccharide (LPS; 0.05 mg/kg, i.p.) exposure produces robust increases in anxiety-like behaviour, accompanied by persistent changes in hypothalamic-pituitary-adrenal (HPA) axis functioning. Altered autonomic nervous system (ANS) activity is an important physiological contributor to the generation of anxiety. Here we examined the long term effects of neonatal LPS exposure on ANS function and the associated changes in neuroendocrine and behavioural indices. ANS function in Wistar rats, neonatally treated with LPS, was assessed via analysis of tyrosine hydroxylase (TH) in the adrenal glands on postnatal days (PNDs) 50 and 85, and via plethysmographic assessment of adult respiratory rate in response to mild stress (acoustic and light stimuli). Expression of genes implicated in regulation of autonomic and endocrine activity in the relevant brain areas was also examined. Neonatal LPS exposure produced an increase in TH phosphorylation and activity at both PNDs 50 and 85. In adulthood, LPS-treated rats responded with increased respiratory rates to the lower intensities of stimuli, indicative of increased autonomic arousal. These changes were associated with increases in anxiety-like behaviours and HPA axis activity, alongside altered expression of the GABA-A receptor α2 subunit, CRH receptor type 1, CRH binding protein, and glucocorticoid receptor mRNA levels in the prefrontal cortex, hippocampus and hypothalamus. The current findings suggest that in addition to the commonly reported alterations in HPA axis functioning, neonatal LPS challenge is associated with a persistent change in ANS activity, associated with, and potentially contributing to, the anxiety-like phenotype. The findings of this study reflect the importance of changes in the perinatal microbial environment on the ontogeny of physiological processes.

Journal ArticleDOI
TL;DR: Evidence is presented that the absence of P2rx7s on non-haematopoietic cells leads to a mood-stabilizing phenotype in several behavioural models and a therapeutic potential of P1X7 antagonists for the treatment of mood disorders is suggested.
Abstract: The purpose of this study was to explore how genetic deletion and pharmacological antagonism of the P2X7 receptor (P2rx7) alter mood-related behaviour, gene expression and stress reactivity in the brain. The forced swim test (FST), tail suspension test (TST) and amphetamine-induced hyperlocomotion (AH) tests were used in wild-type (P2rx7(+/+)) and P2rx7-deficient (P2rx7(-/-)) mice. Biogenic amine levels were analysed in the amygdala and striatum, adrenocorticotropic hormone (ACTH) and corticosterone levels were measured in the plasma and pituitary after restraint stress. Chimeric mice were generated by bone marrow transplantation. A whole genome microarray analysis with real-time polymerase chain reaction validation was performed on the amygdala. In the absence of P2rx7s decreased behavioural despair in the FST, reduced immobility in the TST and attenuated amphetamine-induced hyperactivity were detected. Basal norepinephrine levels were elevated in the amygdala, whereas stress-induced ACTH and corticosterone responses were alleviated in P2rx7(-/-) mice. Sub-acute treatment with the selective P2rx7 antagonist, Brilliant Blue G, reproduced the effect of genetic deletion in the TST and AH test in P2rx7(+/+) but not P2rx7(-/-) mice. No change in behavioural phenotype was observed in chimeras lacking the P2rx7 in their haematopoietic compartment. Whole genome microarray analysis indicated a widespread up- and down-regulation of genes crucial for synaptic function and neuroplasticity by genetic deletion. Here, we present evidence that the absence of P2rx7s on non-haematopoietic cells leads to a mood-stabilizing phenotype in several behavioural models and suggest a therapeutic potential of P2rx7 antagonists for the treatment of mood disorders.

Journal ArticleDOI
TL;DR: UpLC-MS/MS analyses of 11OHA4 metabolism in LNCaP androgen-dependent prostate cancer cells, identified the 5α-reduced metabolite as well as 11-ketoandrostenedione and 12-ketotestosterone, with the latter indicating conversion by 17β-hydroxysteroid dehydrogenase.

Journal ArticleDOI
TL;DR: Comparison of the dynamics of changes in plasma ACTH and corticosterone level with respective alterations in GR and MR in brain structures suggests that the buffering effect of repeated stress depends on the period of habituation to stress and the brain structure involved in regulation of these stress response.

Journal ArticleDOI
TL;DR: It is proposed that birds with low corticosterone responses and proactive personalities are likely to be more successful (have greater fitness) in constant or predictable conditions, whilst birds with reactive personalities and high cortic testosterone responses will be more success in changing or unpredictable conditions.

Journal ArticleDOI
TL;DR: The current data suggest that baseline corticosterone levels represent internal signals that causally mediate reproductive effort in individuals of a wild bird species by increasing reproductive investment, and may have functions during the breeding season that diverge from the suppressive effects of stress-induced concentrations.

Journal ArticleDOI
29 Aug 2013-PLOS ONE
TL;DR: Novel evidence is provided that the sight of a predator can induce a corticosterone response and lead to increased fearfulness in amphibians and that endemic frogs can recognise an introduced predator as a threat.
Abstract: Amphibians, like other animals, generate corticosterone or cortisol glucocorticoid responses to stimuli perceived to be threatening. It is generally assumed that the corticosterone response of animals to capture and handling reflects the corticosterone response to stimuli such as the sight of a predator that are thought to be natural stressors. Fijian ground frogs (Platymantis vitiana) are preyed upon by the introduced cane toads (Rhinella marina), and we used ground frogs to test the hypothesis that the sight of a predator will induce a corticosterone stress response in an amphibian. Urinary corticosterone metabolite concentrations increased in male ground frogs exposed to the sight of a toad for 1, 3 or 6 h, whereas corticosterone did not change in frogs exposed to another male ground frog, a ball, or when no stimulus was present in the test compartment. The frogs exposed to a toad initially moved towards the stimulus then moved away, whereas frogs exposed to another frog moved towards the test frog and remained closer to the frog than at the start of the test. Tonic immobility (TI) was measured as an index of fearfulness immediately after the test exposure of the frogs to a stimulus. The duration of TI was longer in frogs exposed to a toad than to another frog or to a ball. The results provide novel evidence that the sight of a predator can induce a corticosterone response and lead to increased fearfulness in amphibians. In addition, they show that endemic frogs can recognise an introduced predator as a threat.

Journal ArticleDOI
TL;DR: It is demonstrated that aldosterone specifically regulates gene expression in cardiomyocytes despite large prevalence of glucocorticoids in plasma and focused on connective tissue growth factor (CTGF).
Abstract: Inappropriate mineralocorticoid receptor (MR) activation is involved in cardiac diseases. Whether and how aldosterone is involved in the deleterious effects of cardiac mineralocorticoid activation is still unclear. Mice overexpressing MR in cardiomyocytes and their controls were treated for 7 days with aldosterone, and cardiac transcriptome was analyzed. Aldosterone regulated 265 genes in cardiomyocyte-targeted MR overexpression mice. Forty three of these genes were also differentially expressed between untreated cardiomyocyte-targeted MR overexpression and controls mice, thus representing putative aldosterone-regulated genes in cardiomyocytes. Among these genes, we focused on connective tissue growth factor (CTGF). In vivo, in cardiomyocyte-targeted MR overexpression mice, aldosterone (but not corticosterone) induced CTGF expression (mRNA and protein) in cardiomyocytes. Ex vivo, aldosterone induced the binding of mineralocorticoid receptor to CTGF promoter and increased the expression of its transcript. Aldosterone induction of CTGF synthesis in cardiomyocytes seems pathologically relevant as the increase in CTGF observed in a model of heart failure (transverse aortic constriction) in rats was prevented by eplerenone, a mineralocorticoid receptor blocker. This study demonstrates that aldosterone specifically regulates gene expression in cardiomyocytes despite large prevalence of glucocorticoids in plasma.

Journal ArticleDOI
TL;DR: In this paper, the effects of activation and blockade of MC4R in the medial amygdala on anxiety-like behavior, food intake and corticosterone secretion were investigated, showing that MC4-expressing neurons in the MeA were activated by acute restraint stress, as indicated by induction of c-fos mRNA expression.
Abstract: The central melanocortin system has been implicated in emotional stress-induced anxiety, anorexia and activation of the hypothalamo-pituitary-adrenal (HPA) axis. However, the underlying neural substrates have not been identified. The medial amygdala (MeA) is highly sensitive to emotional stress and expresses high levels of the melanocortin-4 receptor (MC4R). This study investigated the effects of activation and blockade of MC4R in the MeA on anxiety-like behaviour, food intake and corticosterone secretion. We demonstrate that MC4R-expressing neurons in the MeA were activated by acute restraint stress, as indicated by induction of c-fos mRNA expression. Infusion of a selective MC4R agonist into the MeA elicited anxiogenic-like effects in the elevated plus-maze test and decreased food intake. In contrast, local MeA infusion of SHU 9119, a MC4R antagonist, blocked restraint stress-induced anxiogenic and anorectic effects. Moreover, plasma corticosterone levels were increased by intra-MeA infusion of the MC4R agonist under non-stressed conditions and restraint stress-induced elevation of plasma corticosterone levels was attenuated by pretreatment with SHU 9119 in the MeA. Thus, stimulating MC4R in the MeA induces stress-like anxiogenic and anorectic effects as well as activation of the HPA axis, whereas antagonizing MC4R in this region blocks such effects induced by restraint stress. Together, our results implicate MC4R signalling in the MeA in behavioural and endocrine responses to stress.

Journal ArticleDOI
TL;DR: The hypothesis that reelin plays a role in the pathogenesis of depression is supported and reelin could be an important target for the development of novel therapeutics for the treatment of depression.

Journal ArticleDOI
TL;DR: WS root extract ameliorated HH induced memory impairment and neurodegeneration in hippocampus through NO mediated modulation of corticosterone levels.

Journal ArticleDOI
15 Aug 2013-PeerJ
TL;DR: It is shown that physiologically-relevant concentrations of corticosterone and metabolic stress (via use of the glucose utilization inhibitor 2-deoxy-D-glucose and the fatty acid oxidation inhibitor ethyl 2-mercaptoacetate) can directly decrease testosterone and estradiol secretion from luteinizing hormone and follicle-stimulating hormone-stimulated testes and ovaries.
Abstract: The gonadotropin releasing hormone (GnRH) system in the hypothalamus is often considered the final point in integration of environmental cues as they pertain to the reproductive axis. However, cues such as stress and food availability are detectable in the plasma (as glucocorticoid and metabolic fuel fluctuations). Vertebrate gonads express glucocorticoid receptor, therefore we hypothesized that the gonads can detect and respond directly to cues of stress. We provide evidence here that, in addition to regulation by the brain, the gonads of European starlings (Sturnus vulgaris) respond directly to fluctuations in corticosterone and metabolic fuels by modulating sex steroid secretion. Using a 4-h gonad culture, we show that physiologically-relevant concentrations of corticosterone and metabolic stress (via use of the glucose utilization inhibitor 2-deoxy-D-glucose and the fatty acid oxidation inhibitor ethyl 2-mercaptoacetate (2DG/MA)) can directly decrease testosterone and estradiol secretion from luteinizing hormone and follicle-stimulating hormone (LH/FSH)-stimulated testes and ovaries. This effect is regulated seasonally. Prior to the breeding season, testes and ovaries respond to corticosterone and 2DG/MA by significantly decreasing gonadal steroid release. Within the breeding season, the testes do not respond to these cues of stress, while the ovaries respond only to corticosterone. This seasonal difference in response may be due in part to the influence of these cues of stress on gonadal neuropeptide expression: corticosterone upregulates GnIH expression in the testes while metabolic stress upregulates GnIH in the ovaries. Thus the gonads can directly respond to fluctuations in corticosterone and metabolic fuels during a time of critical importance to the onset of breeding.

Journal ArticleDOI
TL;DR: Chronic corticosterone treatment triggers several depression-like behaviors, and in parallel, down-regulates MR expression in the hippocampus and hypothalamus, and administration of an MR antagonist confers an anti-depressant effect in chronic corticosteroid-treated animals.