scispace - formally typeset
Search or ask a question

Showing papers on "Esterase published in 2012"


Journal ArticleDOI
TL;DR: In conclusion, the esterase expression and hydrolyzing pattern of dog plasma were found to be closest to that of human plasma, and should be considered when selecting model animals for preclinical studies.

219 citations


Journal ArticleDOI
21 Feb 2012-Polymers
TL;DR: A new esterase from Thermobifida halotolerans (Thh_Est) was cloned and expressed in E. coli and investigated for surface hydrolysis of polylactic acid (PLA) and polyethylene terephthalate (PET) as discussed by the authors.
Abstract: A new esterase from Thermobifida halotolerans (Thh_Est) was cloned and expressed in E. coli and investigated for surface hydrolysis of polylactic acid (PLA) and polyethylene terephthalate (PET). Thh_Est is a member of the serine hydrolases superfamily containing the -GxSxG- motif with 85–87% homology to an esterase from T. alba, to an acetylxylan esterase from T. fusca and to various Thermobifida cutinases. Thh_Est hydrolyzed the PET model substrate bis(benzoyloxyethyl)terephthalate and PET releasing terephthalic acid and mono-(2-hydroxyethyl) terephthalate in comparable amounts (19.8 and 21.5 mmol/mol of enzyme) while no higher oligomers like bis-(2-hydroxyethyl) terephthalate were detected. Similarly, PLA was hydrolyzed as indicated by the release of lactic acid. Enzymatic surface hydrolysis of PET and PLA led to a strong hydrophilicity increase, as quantified with a WCA decrease from 90.8° and 75.5° to 50.4° and to a complete spread of the water drop on the surface, respectively.

123 citations


Journal ArticleDOI
TL;DR: A new carbonic anhydrase from the thermophilic bacterium Sulfurihydrogenibium yellowstonense YO3AOP1 was identified and characterized and showed biochemical properties never observed for the mammalian enzyme.
Abstract: A new carbonic anhydrase (CA, EC 4.2.1.1) from the thermophilic bacterium Sulfurihydrogenibium yellowstonense YO3AOP1 was identified and characterized. The bacterial carbonic anhydrase gene was expressed in Escherichia coli yielding an active enzyme, which was purified in large amounts. The recombinant protein (SspCA) was found to belong to the α-CA class and displays esterase activity. The kinetic parameters were determined by using CO(2) and p-nitrophenylacetate (p-NpA) as substrates. The bacterial enzyme presented specific activity comparable to that of bovine carbonic anhydrase (bCA II) but it showed biochemical properties never observed for the mammalian enzyme. The thermophilic enzyme, in fact, was endowed with high thermostability and with unaltered residual activity after prolonged exposure to heat up to 100°C. SspCA and the bovine carbonic anhydrase (bCA II) were immobilized within a polyurethane (PU) foam. The immobilized bacterial enzyme was found to be active and stable at 100°C up to 50 h.

104 citations


Journal ArticleDOI
TL;DR: Broad substrate specificity, high enzyme activity, and the favorable stability make the PytZ a potential candidate for the detoxification of pyrethroid residues in biotechnological application.

91 citations


Journal ArticleDOI
TL;DR: It is shown that the difference in volatile ester content between the red- and green-fruited species is associated with insertion of a retrotransposon adjacent to the most enzymatically active member of a family of esterases, resulting in the reduced levels of multiple esters that are negatively correlated with human preferences for tomato.
Abstract: Tomato flavor is dependent upon a complex mixture of volatiles including multiple acetate esters. Red-fruited species of the tomato clade accumulate a relatively low content of acetate esters in comparison with the green-fruited species. We show that the difference in volatile ester content between the red- and green-fruited species is associated with insertion of a retrotransposon adjacent to the most enzymatically active member of a family of esterases. This insertion causes higher expression of the esterase, resulting in the reduced levels of multiple esters that are negatively correlated with human preferences for tomato. The insertion was evolutionarily fixed in the red-fruited species, suggesting that high expression of the esterase and consequent low ester content may provide an adaptive advantage in the ancestor of the red-fruited species. These results illustrate at a molecular level how closely related species exhibit major differences in volatile production by altering a volatile-associated catabolic activity.

84 citations


Journal Article
TL;DR: The isolate DVL 2 lipase/esterase was found to esterify stearic acid with ethanol resulting in the formation of ethyl stearate which was confirmed by thin layer chromatography and DVL2 lipase gave positive results when applied for resolution of chiral auxillary viz. 1-acetyl phenyl ethanol.
Abstract: The isolate DVL2 was isolated from common city garbage using the tributyrin as substrate. The isolate resulted in orange fluoresce under UV light on rohodamine olive oil agar plate detecting the lipase production. Three production media (PM1, PM2 and PM3) were evaluated for lipase/esterase production. In culture filterate (extracellular enzyme) and cell free extract i.e. extract after sonication of cells (intracellular enzyme), both lipase and esterase activity were detected. But esterase activity was found to be associated only with bacterial cells. The maximum intracellular (112 IU/L) and extracellular (33 IU/L) lipase production were obtained in Production medium 2 after 24 and 36 h respectively whereas the maximum production of esterase (extracellular, intracellular and membrane bound) was obtained in Production medium 2 after 24 h. The DVL2 lipase/esterase was found to esterify stearic acid with ethanol resulting in the formation of ethyl stearate which was confirmed by thin layer chromatography. Furthermore DVL2 lipase gave positive results when applied for resolution of chiral auxillary viz. 1-acetyl phenyl ethanol.

82 citations


Journal ArticleDOI
TL;DR: Two desferrioxamine B-ciprofloxacin conjugates with 'trimethyl-lock' based linkers that are designed to release the antibiotic after esterase or phosphatase-mediated hydrolysis were synthesized displayed moderate to good antibacterial activities against selected ferrioxamines-utilizing bacteria.

72 citations


Journal ArticleDOI
TL;DR: This is the first report of enzymatic hydrolysis of florfenicol resulting in inactivation of the antibiotic.
Abstract: Chloramphenicol and florfenicol are broad-spectrum antibiotics. Although the bacterial resistance mechanisms to these antibiotics have been well documented, hydrolysis of these antibiotics has not been reported in detail. This study reports the hydrolysis of these two antibiotics by a specific hydrolase that is encoded by a gene identified from a soil metagenome. Hydrolysis of chloramphenicol has been recognized in cell extracts of Escherichia coli expressing a chloramphenicol acetate esterase gene, estDL136. A hydrolysate of chloramphenicol was identified as p-nitrophenylserinol by liquid chromatography-mass spectroscopy and proton nuclear magnetic resonance spectroscopy. The hydrolysis of these antibiotics suggested a promiscuous amidase activity of EstDL136. When estDL136 was expressed in E. coli, EstDL136 conferred resistance to both chloramphenicol and florfenicol on E. coli, due to their inactivation. In addition, E. coli carrying estDL136 deactivated florfenicol faster than it deactivated chloramphenicol, suggesting that EstDL136 hydrolyzes florfenicol more efficiently than it hydrolyzes chloramphenicol. The nucleotide sequences flanking estDL136 encode proteins such as amidohydrolase, dehydrogenase/reductase, major facilitator transporter, esterase, and oxidase. The most closely related genes are found in the bacterial family Sphingomonadaceae, which contains many bioremediation-related strains. Whether the gene cluster with estDL136 in E. coli is involved in further chloramphenicol degradation was not clear in this study. While acetyltransferases for chloramphenicol resistance and drug exporters for chloramphenicol or florfenicol resistance are often detected in numerous microbes, this is the first report of enzymatic hydrolysis of florfenicol resulting in inactivation of the antibiotic.

72 citations


Journal ArticleDOI
TL;DR: The recombinant Sys410 with broad substrate specificities and high activity was the most thermostable one of the pyrethroid-hydrolyzing esterases studied before, which made it an ideal candidate for the detoxification of pyrethroids.
Abstract: Pyrethroid pesticides are broad-spectrum pest control agents in agricultural production. Both agricultural and residential usage is continuing to grow, leading to the development of insecticide resistance in the pest and toxic effects on a number of nontarget organisms. Thus, it is necessary to hunt suitable enzymes including hydrolases for degrading pesticide residues, which is an efficient "green" solution to biodegrade polluting chemicals. Although many pyrethroid esterases have consistently been purified and characterized from various resources including metagenomes and organisms, the thermostable pyrethroid esterases have not been reported up to the present. In this study, we identified a novel pyrethroid-hydrolyzing enzyme Sys410 belonging to familyV esterases/lipases with activity-based functional screening from Turban Basin metagenomic library. Sys410 contained 280 amino acids with a predicted molecular mass (Mr) of 30.8 kDa and was overexpressed in Escherichia coli BL21 (DE3) in soluble form. The optimum pH and temperature of the recombinant Sys410 were 6.5 and 55°C, respectively. The enzyme was stable in the pH range of 4.5-8.5 and at temperatures below 50°C. The activity of Sys410 decreased a little when stored at 4°C for 10 weeks, and the residual activity reached 94.1%. Even after incubation at 25°C for 10 weeks, it kept 68.3% of its activity. The recombinant Sys410 could hydrolyze a wide range of ρ-nitrophenyl esters, but its best substrate is ρ-nitrophenyl acetate with the highest activity (772.9 U/mg). The enzyme efficiently degraded cyhalothrin, cypermethrin, sumicidin, and deltamethrin under assay conditions of 37°C for 15 min, with exceeding 95% hydrolysis rate. This is the first report to construct metagenomic libraries from Turban Basin to obtain the thermostable pyrethroid-hydrolyzing enzyme. The recombinant Sys410 with broad substrate specificities and high activity was the most thermostable one of the pyrethroid-hydrolyzing esterases studied before, which made it an ideal candidate for the detoxification of pyrethroids.

70 citations


Journal ArticleDOI
TL;DR: High TcGLIP gene expression was observed in the leaves of mature plants and seedlings as well as in buds and flowers, a finding that was consistent with the pyrethrin I content in these parts, which suggested that the enzyme plays a key role in the defense mechanism of T. cinerariifolium.
Abstract: Summary Although natural insecticides pyrethrins produced by Tanacetum cinerariifolium are used worldwide to control insect pest species, little information is known of their biosynthesis. From the buds of T. cinerariifolium, we have purified a protein that is able to transfer the chrysanthemoyl group from the coenzyme A (CoA) thioester to pyrethrolone to produce pyrethrin I and have isolated cDNAs that encode the enzyme. To our surprise, the active principle was not a member of a known acyltransferase family but a member of the GDSL lipase family. The recombinant enzyme (TcGLIP) was expressed in Escherichia coli and displayed the acyltransferase reaction with high substrate specificity, recognized the absolute configurations of three asymmetric carbons and also showed esterase activity. A S40A mutation in the Block I domain reduced both acyltransferase and esterase activities, which suggested an important role of this serine residue in these two activities. The signal peptide directed the localization of TcGLIP::enhanced green fluorescent protein (EGFP) fusion, as well as EGFP, to the extracellular space. High TcGLIP gene expression was observed in the leaves of mature plants and seedlings as well as in buds and flowers, a finding that was consistent with the pyrethrin I content in these parts. Expression was enhanced in response to wounding, which suggested that the enzyme plays a key role in the defense mechanism of T. cinerariifolium.

67 citations


Journal ArticleDOI
TL;DR: Determination of enzymatic activities revealed a broad range of hemicellulases and pectinases poorly represented in commercial cocktails, which provide a first step towards the identification of candidates to supplement T. reesei enzyme preparations for lignocellulose hydrolysis.

Journal ArticleDOI
TL;DR: Ferulic acid (FA) was efficiently released from destarched wheat bran when the esterase was incubated together with an M3 xylanase from Trichoderma longibrachiatum (a maximum of 41% total FA released after 1 h incubation) and prediction of the secondary structure of MtFae1a was performed in the PSIPRED server whilst modelling the 3D structure was accomplished by the use of the HH3D structure prediction server.
Abstract: A ferulic acid esterase (FAE) from the thermophilic fungus Myceliophthora thermophila (synonym Sporotrichum thermophile), belonging to the carbohydrate esterase family 1 (CE-1), was functionally expressed in methylotrophic yeast Pichia pastoris. The putative FAE from the genomic DNA was successfully cloned in P. pastoris X-33 to confirm that the enzyme exhibits FAE activity. The recombinant FAE was purified to its homogeneity (39 kDa) and subsequently characterized using a series of model substrates including methyl esters of hydroxycinnamates, alkyl ferulates and monoferuloylated 4-nitrophenyl glycosides. The substrate specificity profiling reveals that the enzyme shows a preference for the hydrolysis of methyl caffeate and p-coumarate and a strong preference for the hydrolysis of n-butyl and iso-butyl ferulate. The enzyme was active on substrates containing ferulic acid ester linked to the C-5 and C-2 linkages of arabinofuranose, whilst it was found capable of de-esterifying acetylated glucuronoxylans. Ferulic acid (FA) was efficiently released from destarched wheat bran when the esterase was incubated together with an M3 xylanase from Trichoderma longibrachiatum (a maximum of 41% total FA released after 1 h incubation). Prediction of the secondary structure of MtFae1a was performed in the PSIPRED server whilst modelling the 3D structure was accomplished by the use of the HH 3D structure prediction server.

Journal ArticleDOI
TL;DR: Activity assay conducted at different temperatures revealed that EstPc is a cold-adapted esterase which possesses relatively high thermostability, preserving more than 60% of activity after incubation for 1 h at 80 °C.

Journal ArticleDOI
TL;DR: The characterization of Est6 revealed that it was a cold-active esterase and exhibited the highest activity toward p-nitrophenyl butyrate (C4) at 20°C and pH 7.5.
Abstract: A deep-sea sediment metagenomic library was constructed and screened for lipolytic enzymes by activity-based approach. Nine novel lipolytic enzymes were identified, and the amino acid sequences shared 56% to 84% identity to other lipolytic enzymes in the database. Phylogenetic analysis showed that these enzymes belonged to family IV lipolytic enzymes. One of the lipolytic enzymes, Est6, was successfully cloned and expressed in Escherichia coli Rosetta in a soluble form. The recombinant protein was purified by Ni-nitrilotriacetic affinity chromatography column and characterized using p-nitrophenyl esters with various chain lengths. The est6 gene consisted of 909 bp that encoded 302 amino acid residues. Est6 was most similar to a lipolytic enzyme from uncultured bacterium (ACL67845, 61% identity) isolated from the South China Sea marine sediment metagenome. The characterization of Est6 revealed that it was a cold-active esterase and exhibited the highest activity toward p-nitrophenyl butyrate (C4) at 20°C and pH 7.5.

Journal ArticleDOI
01 Jun 2012-Proteins
TL;DR: The positional specificity of TM0077 was investigated using 4‐nitrophenyl‐β‐D‐xylopyranoside monoacetates as substrates in a β-xylosidase‐coupled assay and confirmed that both inhibitors bind covalently to the catalytic serine (Ser188).
Abstract: TM0077 from Thermotoga maritima is a member of the carbohydrate esterase family 7 and is active on a variety of acetylated compounds, including cephalosporin C. TM0077 esterase activity is confined to short-chain acyl esters (C2-C3), and is optimal around 100°C and pH 7.5. The positional specificity of TM0077 was investigated using 4-nitrophenyl-β-D-xylopyranoside monoacetates as substrates in a β-xylosidase-coupled assay. TM0077 hydrolyzes acetate at positions 2, 3, and 4 with equal efficiency. No activity was detected on xylan or acetylated xylan, which implies that TM0077 is an acetyl esterase and not an acetyl xylan esterase as currently annotated. Selenomethionine-substituted and native structures of TM0077 were determined at 2.1 and 2.5 A resolution, respectively, revealing a classic α/β-hydrolase fold. TM0077 assembles into a doughnut-shaped hexamer with small tunnels on either side leading to an inner cavity, which contains the six catalytic centers. Structures of TM0077 with covalently bound phenylmethylsulfonyl fluoride and paraoxon were determined to 2.4 and 2.1 A, respectively, and confirmed that both inhibitors bind covalently to the catalytic serine (Ser188). Upon binding of inhibitor, the catalytic serine adopts an altered conformation, as observed in other esterase and lipases, and supports a previously proposed catalytic mechanism in which Ser hydroxyl rotation prevents reversal of the reaction and allows access of a water molecule for completion of the reaction.

Journal ArticleDOI
TL;DR: In this paper, a thermalkalophilic esterase enzyme from Balcova (Agamemnon) geothermal site was aimed to be immobilized effectively via a simple and cost-effective protocol in silicate coated Calcium alginate (Ca-alginate) beads by entrapment.

Journal ArticleDOI
TL;DR: In this study, an esterase, designated EstC23, was isolated from a soil metagenomic library and showed remarkable stability in up to 50% benzene and alkanes (high logP solvents).


Journal ArticleDOI
TL;DR: A metagenomic approach has been shown to yield an enzyme with quite different sequential/structural properties to known lipases, serving as an excellent candidate for analysis of the molecular mechanisms responsible for both cold and alkaline activity and novel structure–function relationships of esterase activity.
Abstract: A novel, cold-active and highly alkaliphilic esterase was isolated from an Antarctic desert soil metagenomic library by functional screening. The 1,044 bp gene sequence contained several conserved regions common to lipases/esterases, but lacked clear classification based on sequence analysis alone. Moderate (<40%) amino acid sequence similarity to known esterases was apparent (the closest neighbour being a hypothetical protein from Chitinophaga pinensis), despite phylogenetic distance to many of the lipolytic “families”. The enzyme functionally demonstrated activity towards shorter chain p-nitrophenyl esters with the optimal activity recorded towards p-nitrophenyl propionate (C3). The enzyme possessed an apparent Topt at 20°C and a pH optimum at pH 11. Esterases possessing such extreme alkaliphily are rare and so this enzyme represents an intriguing novel locus in protein sequence space. A metagenomic approach has been shown, in this case, to yield an enzyme with quite different sequential/structural properties to known lipases. It serves as an excellent candidate for analysis of the molecular mechanisms responsible for both cold and alkaline activity and novel structure–function relationships of esterase activity.

Journal ArticleDOI
02 Mar 2012-PLOS ONE
TL;DR: One of the recombinant enzymes, EstC, showed interesting cold-active esterase activity with a strong potential for the production of valuable esters, suggesting it could function as an interesting candidate for organic synthesis of short-chain esters such as flavors.
Abstract: The genome sequence of Streptomyces coelicolor A3(2) contains more than 50 genes coding for putative lipolytic enzymes. Many studies have shown the capacity of this actinomycete to store important reserves of intracellular triacylglycerols in nutrient depletion situations. In the present study, we used genome mining of S. coelicolor to identify genes coding for putative, non-secreted esterases/lipases. Two genes were cloned and successfully overexpressed in E. coli as His-tagged fusion proteins. One of the recombinant enzymes, EstC, showed interesting cold-active esterase activity with a strong potential for the production of valuable esters. The purified enzyme displayed optimal activity at 35°C and was cold-active with retention of 25% relative activity at 10°C. Its optimal pH was 8.5–9 but the enzyme kept more than 75% of its maximal activity between pH 7.5 and 10. EstC also showed remarkable tolerance over a wide range of pH values, retaining almost full residual activity between pH 6–11. The enzyme was active toward short-chain p-nitrophenyl esters (C2–C12), displaying optimal activity with the valerate (C5) ester (kcat/Km = 737±77 s−1 mM−1). The enzyme was also very active toward short chain triglycerides such as triacetin (C2:0) and tributyrin (C4:0), in addition to showing good primary alcohol and organic solvent tolerance, suggesting it could function as an interesting candidate for organic synthesis of short-chain esters such as flavors.

Journal ArticleDOI
Xiawei Jiang1, Ying-Yi Huo1, Hong Cheng1, Xin-Qi Zhang1, Xu-Fen Zhu1, Min Wu1 
TL;DR: Three-dimensional modeling of PE10 suggested that the high negative electrostatic potential on the surface may relevant to its tolerance to high salt environment and with this halotolerance property, PE10 could be a candidate for industrial use.
Abstract: An esterase PE10 (279 aa) from Pelagibacterium halotolerans B2T was cloned and overexpressed in Escherichia coli Rosetta in a soluble form. The deduced protein was 29.91 kDa and the phylogenetic analysis of the deduced amino acids sequence showed it represented a new family of lipolytic enzymes. The recombinant protein was purified by Ni–NTA affinity chromatography column and the characterization showed its optimal temperature and pH were 45 °C and pH 7.5, respectively. Substrate specificity study showed PE10 preferred short chain p-nitrophenyl esters and exhibited maximum activity toward p-nitrophenyl acetate. In addition, PE10 was a halotolerant esterase as it was still active under 4 M NaCl. Three-dimensional modeling of PE10 suggested that the high negative electrostatic potential on the surface may relevant to its tolerance to high salt environment. With this halotolerance property, PE10 could be a candidate for industrial use.

Journal ArticleDOI
01 Feb 2012-Planta
TL;DR: The results suggested that de-acetylation resulted in a stiffer tuber tissue and a stronger cell wall matrix, as a result of changes to a rapidly relaxing viscoelastic component.
Abstract: A mung bean (Vigna radiata) pectin acetyl esterase (CAA67728) was heterologously expressed in tubers of potato (Solanum tuberosum) under the control of the granule-bound starch synthase promoter or the patatin promoter in order to probe the significance of O-acetylation on cell wall and tissue properties. The recombinant tubers showed no apparent macroscopic phenotype. The enzyme was recovered from transgenic tubers using a high ionic strength buffer and the extract was active against a range of pectic substrates. Partial in vivo de-acetylation of cell wall polysaccharides occurred in the transformants, as shown by a 39% decrease in the degree of acetylation (DA) of tuber cell wall material (CWM). Treatment of CWM using a combination of endo-polygalacturonase and pectin methyl esterase extracted more pectin polymers from the transformed tissue compared to wild type. The largest effect of the pectin acetyl esterase (68% decrease in DA) was seen in the residue from this extraction, suggesting that the enzyme is preferentially active on acetylated pectin that is tightly bound to the cell wall. The effects of acetylation on tuber mechanical properties were investigated by tests of failure under compression and by determination of viscoelastic relaxation spectra. These tests suggested that de-acetylation resulted in a stiffer tuber tissue and a stronger cell wall matrix, as a result of changes to a rapidly relaxing viscoelastic component. These results are discussed in relation to the role of pectin acetylation in primary cell walls and its implications for industrial uses of potato fibres.

Journal ArticleDOI
TL;DR: It is shown that the promotion of glucuronoyl esterase activity in plants can alter the extent of intermolecular cross-linking within plant cell walls and could be correlated with improved xylose recovery in transgenic plants, up to 15%.
Abstract: A family 15 carbohydrate esterase (CE15) from the white-rot basidiomycete, Phanerochaete carnosa (PcGCE), was transformed into Arabidopsis thaliana Col-0 and was expressed from the constitutive cauliflower mosaic virus 35S promoter. Like other CE15 enzymes, PcGCE hydrolyzed methyl-4-O-methyl-d-glucopyranuronate and could target ester linkages that contribute to lignin-carbohydrate complexes that form in plant cell walls. Three independently transformed Arabidopsis lines were evaluated in terms of nine morphometric parameters, total sugar and lignin composition, cell wall anatomy, enzymatic saccharification and xylan extractability. The transgenic lines consistently displayed a leaf-yellowing phenotype, as well as reduced glucose and xylose content by as much as 30% and 35%, respectively. Histological analysis revealed 50% reduction in cell wall thickness in the interfascicular fibres of transgenic plants, and FT-IR microspectroscopy of interfascicular fibre walls indicated reduction in lignin cross-linking in plants overexpressing PcGCE. Notably, these characteristics could be correlated with improved xylose recovery in transgenic plants, up to 15%. The current analysis represents the first example whereby a fungal glucuronoyl esterase is expressed in Arabidopsis and shows that the promotion of glucuronoyl esterase activity in plants can alter the extent of intermolecular cross-linking within plant cell walls.

Journal ArticleDOI
TL;DR: RT-PCR analyses demonstrated, for the first time to the authors' knowledge, that Pmei genes are regulated by intron retention, and suggest that products encoded by these TdpmeI genes control organ- or tissue-specific activity of specific PME isoforms in wheat.
Abstract: Pectin is an important component of the plant cell wall and its remodelling occurs during normal plant growth or following stress responses. Pectin is secreted into the cell wall in a highly methyl-esterified form and subsequently de-methyl-esterified by pectin methyl esterase (PME), whose activity is controlled by the pectin methyl esterase inhibitor protein (PMEI). Cereal cell wall contains a low amount of pectin; nonetheless the level and pattern of pectin methyl esterification play a primary role during development or pathogen infection. Since few data are available on the role of PMEI in plant development and defence of cereal species, we isolated and characterised three Pmei genes (Tdpmei2.1, Tdpmei2.2 and Tdpmei3) and their encoded products in wheat. Sequence comparisons showed a low level of intra- and inter-specific sequence conservation of PMEIs. Tdpmei2.1 and Tdpmei2.2 share 94% identity at protein level, but only 20% identity with the product of Tdpmei3. All three Tdpmei genes code for functional inhibitors of plant PMEs and do not inhibit microbial PMEs or a plant invertase. RT-PCR analyses demonstrated, for the first time to our knowledge, that Pmei genes are regulated by intron retention. Processed and unprocessed transcripts of Tdpmei2.1 and Tdpmei2.2 accumulated in several organs, but anthers contained only mature transcripts. Tdpmei3 lacks introns and its transcript accumulated mainly in stem internodes. These findings suggest that products encoded by these Tdpmei genes control organ- or tissue-specific activity of specific PME isoforms in wheat.

Journal ArticleDOI
TL;DR: It is suggested that X. polymorpha GH78, the first fungal enzyme that combines glycosyl hydrolase with esterase activities and may help this soft rot fungus to degrade lignocelluloses, is a multifunctional enzyme.
Abstract: Soft rot (type II) fungi belonging to the family Xylariaceae are known to substantially degrade hardwood by means of their poorly understood lignocellulolytic system, which comprises various hydrolases, including feruloyl esterases and laccase. In the present study, several members of the Xylariaceae were found to exhibit high feruloyl esterase activity during growth on lignocellulosic materials such as wheat straw (up to 1,675 mU g−1) or beech wood (up to 80 mU g−1). Following the ester-cleaving activity toward methyl ferulate, a hydrolase of Xylaria polymorpha was produced in solid-state culture on wheat straw and purified by different steps of anion-exchange and size-exclusion chromatography to apparent homogeneity (specific activity, 2.2 U mg−1). The peptide sequence of the purified protein deduced from the gene sequence and verified by de novo peptide sequencing shows high similarity to putative α-l-rhamnosidase sequences belonging to the glycoside hydrolase family 78 (GH78; classified under EC 3.2.1.40). The purified enzyme (98 kDa by SDS-PAGE, 103 kDa by size-exclusion chromatography; pI 3.7) converted diverse glycosides (e.g., α-l-rhamnopyranoside and α-l-arabinofuranoside) but also natural and synthetic esters (e.g., chlorogenic acid, hydroxycinnamic acid glycoside esters, veratric acid esters, or p-nitrophenyl acetate) and released free hydroxycinnamic acids (ferulic and coumaric acid) from arabinoxylan and milled wheat straw. These catalytic properties strongly suggest that X. polymorpha GH78 is a multifunctional enzyme. It is the first fungal enzyme that combines glycosyl hydrolase with esterase activities and may help this soft rot fungus to degrade lignocelluloses.

Journal ArticleDOI
TL;DR: This report provides a synopsis of the esterase processing of short chain fatty acid (SCFA)-derivatized hexosamine analogs used in metabolic glycoengineering by demonstrating that the extracellular hydrolysis of these compounds is comparatively slow.

Journal ArticleDOI
TL;DR: The characterization of this cold-adapted enzyme indicated that the esterase may be very valuable in industrial applications, and was found to be a member of the family IV of lipolytic enzymes.
Abstract: A novel lipolytic enzyme was isolated from a metagenomic library after demonstration of lipolytic activity on an LB agar plate containing 1% (w/v) tributyrin. A novel esterase gene (estIM1), encoding a lipolytic enzyme (EstIM1), was cloned using a shotgun method from a pFosEstIM1 clone of the metagenomic library, and the enzyme was characterized. The estIM1 gene had an open reading frame (ORF) of 936 base pairs and encoded a protein of 311 amino acids with a molecular mass 34 kDa and a pI value of 4.32. The deduced amino acid sequence was 62% identical to that of an esterase from an uncultured bacterium (ABQ11271). The amino acid sequence indicated that EstIM1 was a member of the family IV of lipolytic enzymes, all of which contain a GDSAG motif shared with similar enzymes of lactic acid microorganisms. EstIM1 was active over a temperature range of 1–50°C, at alkaline pH. The activation energy for hydrolysis of p-nitrophenyl propionate was 1.04 kcal/mol, within a temperature range of 1–40°C. The activity of EstIM1 was about 60% of maximal even at 1°C, suggesting that EstIM1 is efficiently cold-adapted. Further characterization of this cold-adapted enzyme indicated that the esterase may be very valuable in industrial applications.

Journal ArticleDOI
TL;DR: It is demonstrated that low-dose chlorination causes significant decrease in chlorophyll autofluorescence, intracellular esterase activity and primary productivity in Chlorella cells.

Journal ArticleDOI
TL;DR: The results of the present study suggest that the bound anion perhaps contributes to the polarization of the catalytic water molecule and increases the rate of the hydrolysis of an acyl-enzyme intermediate in a cold-active and anion-activated carboxyl esterase.
Abstract: The uncharacterized α/β-hydrolase protein OLEI01171 from the psychrophilic marine bacterium Oleispira antarctica belongs to the PF00756 family of putative esterases, which also includes human esterase D. In the present paper we show that purified recombinant OLEI01171 exhibits high esterase activity against the model esterase substrate α-naphthyl acetate at 5—30°C with maximal activity at 15–20°C. The esterase activity of OLEI01171 was stimulated 3–8-fold by the addition of chloride or several other anions (0.1–1.0 M). Compared with mesophilic PF00756 esterases, OLEI01171 exhibited a lower overall protein thermostability. Two crystal structures of OLEI01171 were solved at 1.75 and 2.1 A resolution and revealed a classical serine hydrolase catalytic triad and the presence of a chloride or bromide ion bound in the active site close to the catalytic Ser148. Both anions were found to co-ordinate a potential catalytic water molecule located in the vicinity of the catalytic triad His257. The results of the present study suggest that the bound anion perhaps contributes to the polarization of the catalytic water molecule and increases the rate of the hydrolysis of an acyl-enzyme intermediate. Alanine replacement mutagenesis of OLEI01171 identified ten amino acid residues important for esterase activity. The replacement of Asn225 by lysine had no significant effect on the activity or thermostability of OLEI01171, but resulted in a detectable increase of activity at 35–45°C. The present study has provided insight into the molecular mechanisms of activity of a cold-active and anion-activated carboxyl esterase. Abbreviations: BioH, pimelyl-(acyl-carrier protein) methyl ester esterase; FGH, S-formyl-glutathione hydrolase; FrmB, FGH frmB; pNP, p-nitrophenyl; rmsd, root mean square deviation; TLS, Translation–Liberation–Screw rotation; YeiG, FGH yeiG

Journal ArticleDOI
TL;DR: The cellular localization of esterase activity indicates that the intine is a putative storage site for esterolytic enzymes in olive pollen, and these enzymes are likely to be involved in pollen germination, and pollen tube growth and penetration of the stigma.