scispace - formally typeset
Search or ask a question

Showing papers on "Haze published in 2016"


01 Jan 2016
TL;DR: This thesis develops an effective but very simple prior, called the dark channel prior, to remove haze from a single image, and thus solves the ambiguity of the problem.
Abstract: Haze brings troubles to many computer vision/graphics applications. It reduces the visibility of the scenes and lowers the reliability of outdoor surveillance systems; it reduces the clarity of the satellite images; it also changes the colors and decreases the contrast of daily photos, which is an annoying problem to photographers. Therefore, removing haze from images is an important and widely demanded topic in computer vision and computer graphics areas. The main challenge lies in the ambiguity of the problem. Haze attenuates the light reflected from the scenes, and further blends it with some additive light in the atmosphere. The target of haze removal is to recover the reflected light (i.e., the scene colors) from the blended light. This problem is mathematically ambiguous: there are an infinite number of solutions given the blended light. How can we know which solution is true? We need to answer this question in haze removal. Ambiguity is a common challenge for many computer vision problems. In terms of mathematics, ambiguity is because the number of equations is smaller than the number of unknowns. The methods in computer vision to solve the ambiguity can roughly categorized into two strategies. The first one is to acquire more known variables, e.g., some haze removal algorithms capture multiple images of the same scene under different settings (like polarizers).But it is not easy to obtain extra images in practice. The second strategy is to impose extra constraints using some knowledge or assumptions .All the images in this thesis are best viewed in the electronic version. This way is more practical since it requires as few as only one image. To this end, we focus on single image haze removal in this thesis. The key is to find a suitable prior. Priors are important in many computer vision topics. A prior tells the algorithm "what can we know about the fact beforehand" when the fact is not directly available. In general, a prior can be some statistical/physical properties, rules, or heuristic assumptions. The performance of the algorithms is often determined by the extent to which the prior is valid. Some widely used priors in computer vision are the smoothness prior, sparsity prior, and symmetry prior. In this thesis, we develop an effective but very simple prior, called the dark channel prior, to remove haze from a single image. The dark channel prior is a statistical property of outdoor haze-free images: most patches in these images should contain pixels which are dark in at least one color channel. These dark pixels can be due to shadows, colorfulness, geometry, or other factors. This prior provides a constraint for each pixel, and thus solves the ambiguity of the problem. Combining this prior with a physical haze imaging model, we can easily recover high quality haze-free images.

2,055 citations


Journal ArticleDOI
TL;DR: The results explain the outstanding sulfur problem during the historic London Fog formation and elucidate the chemical mechanism of severe haze in China, and suggest that effective haze mitigation is achievable by intervening in the sulfate formation process with NH3 and NO2 emission control measures.
Abstract: Sulfate aerosols exert profound impacts on human and ecosystem health, weather, and climate, but their formation mechanism remains uncertain. Atmospheric models consistently underpredict sulfate levels under diverse environmental conditions. From atmospheric measurements in two Chinese megacities and complementary laboratory experiments, we show that the aqueous oxidation of SO2 by NO2 is key to efficient sulfate formation but is only feasible under two atmospheric conditions: on fine aerosols with high relative humidity and NH3 neutralization or under cloud conditions. Under polluted environments, this SO2 oxidation process leads to large sulfate production rates and promotes formation of nitrate and organic matter on aqueous particles, exacerbating severe haze development. Effective haze mitigation is achievable by intervening in the sulfate formation process with enforced NH3 and NO2 control measures. In addition to explaining the polluted episodes currently occurring in China and during the 1952 London Fog, this sulfate production mechanism is widespread, and our results suggest a way to tackle this growing problem in China and much of the developing world.

1,027 citations


Journal ArticleDOI
TL;DR: In this paper, the missing source of sulfate and particulate matter can be explained by reactive nitrogen chemistry in aerosol water, where the alkaline aerosol components trap SO 2, which is oxidized by NO 2 to form sulfate, whereby high reaction rates are sustained by the high neutralizing capacity of the atmosphere.
Abstract: Fine-particle pollution associated with winter haze threatens the health of more than 400 million people in the North China Plain. Sulfate is a major component of fine haze particles. Record sulfate concentrations of up to ~300 μg m −3 were observed during the January 2013 winter haze event in Beijing. State-of-the-art air quality models that rely on sulfate production mechanisms requiring photochemical oxidants cannot predict these high levels because of the weak photochemistry activity during haze events. We find that the missing source of sulfate and particulate matter can be explained by reactive nitrogen chemistry in aerosol water. The aerosol water serves as a reactor, where the alkaline aerosol components trap SO 2 , which is oxidized by NO 2 to form sulfate, whereby high reaction rates are sustained by the high neutralizing capacity of the atmosphere in northern China. This mechanism is self-amplifying because higher aerosol mass concentration corresponds to higher aerosol water content, leading to faster sulfate production and more severe haze pollution.

821 citations


Journal ArticleDOI
TL;DR: In this paper, the influence of potential fire emissions across the domain on smoke concentrations in three receptor areas downwind during the 2006 event was calculated using the adjoint of the GEOS-Chem chemical transport model, which allows near real-time assessment of smoke pollution exposure, and therefore the consequent morbidity and premature mortality.
Abstract: In September–October 2015, El Nino and positive Indian Ocean Dipole conditions set the stage for massive fires in Sumatra and Kalimantan (Indonesian Borneo), leading to persistently hazardous levels of smoke pollution across much of Equatorial Asia. Here we quantify the emission sources and health impacts of this haze episode and compare the sources and impacts to an event of similar magnitude occurring under similar meteorological conditions in September–October 2006. Using the adjoint of the GEOS-Chem chemical transport model, we first calculate the influence of potential fire emissions across the domain on smoke concentrations in three receptor areas downwind—Indonesia, Malaysia, and Singapore—during the 2006 event. This step maps the sensitivity of each receptor to fire emissions in each grid cell upwind. We then combine these sensitivities with 2006 and 2015 fire emission inventories from the Global Fire Assimilation System (GFAS) to estimate the resulting population-weighted smoke exposure. This method, which assumes similar smoke transport pathways in 2006 and 2015, allows near real-time assessment of smoke pollution exposure, and therefore the consequent morbidity and premature mortality, due to severe haze. Our approach also provides rapid assessment of the relative contribution of fire emissions generated in a specific province to smoke-related health impacts in the receptor areas. We estimate that haze in 2015 resulted in 100 300 excess deaths across Indonesia, Malaysia and Singapore, more than double those of the 2006 event, with much of the increase due to fires in Indonesia's South Sumatra Province. The model framework we introduce in this study can rapidly identify those areas where land use management to reduce and/or avoid fires would yield the greatest benefit to human health, both nationally and regionally.

279 citations


Journal ArticleDOI
TL;DR: In this paper, a positive matrix factorization procedure was developed to apportion the sources of organic aerosols based on their mass spectra using the multilinear engine (ME-2) controlled via the source finder (SoFi).
Abstract: . During winter 2013–2014 aerosol mass spectrometer (AMS) measurements were conducted for the first time with a novel PM2.5 (particulate matter with aerodynamic diameter ≤ 2.5 µm) lens in two major cities of China: Xi'an and Beijing. We denote the periods with visibility below 2 km as extreme haze and refer to the rest as reference periods. During the measurements in Xi'an an extreme haze covered the city for about a week and the total non-refractory (NR)-PM2.5 mass fraction reached peak concentrations of over 1000 µg m−3. During the measurements in Beijing two extreme haze events occurred, but the temporal extent and the total concentrations reached during these events were lower than in Xi'an. Average PM2.5 concentrations of 537 ± 146 and 243 ± 47 µg m−3 (including NR species and equivalent black carbon, eBC) were recorded during the extreme haze events in Xi'an and Beijing, respectively. During the reference periods the measured average concentrations were 140 ± 99 µg m−3 in Xi'an and 75 ± 61 µg m−3 in Beijing. The relative composition of the NR-PM2.5 evolved substantially during the extreme haze periods, with increased contributions of the inorganic components (mostly sulfate and nitrate). Our results suggest that the high relative humidity present during the extreme haze events had a strong effect on the increase of sulfate mass (via aqueous phase oxidation of sulfur dioxide). Another relevant characteristic of the extreme haze is the size of the measured particles. During the extreme haze events, the AMS showed much larger particles, with a volume weighted mode at about 800 to 1000 nm, in contrast to about 400 nm during reference periods. These large particle sizes made the use of the PM2.5 inlet crucial, especially during the severe haze events, where 39 ± 5 % of the mass would have been lost in the conventional PM1 (particulate matter with aerodynamic diameter ≤ 1 µm) inlet. A novel positive matrix factorization procedure was developed to apportion the sources of organic aerosols (OA) based on their mass spectra using the multilinear engine (ME-2) controlled via the source finder (SoFi). The procedure allows for an effective exploration of the solution space, a more objective selection of the best solution and an estimation of the rotational uncertainties. Our results clearly show an increase of the oxygenated organic aerosol (OOA) mass during extreme haze events. The contribution of OOA to the total OA increased from the reference to the extreme haze periods from 16.2 ± 1.1 to 31.3 ± 1.5 % in Xi'an and from 15.7 ± 0.7 to 25.0 ± 1.2 % in Beijing. By contrast, during the reference periods the total OA mass was dominated by domestic emissions of primary aerosols from biomass burning in Xi'an (42.2 ± 1.5 % of OA) and coal combustion in Beijing (55.2 ± 1.6 % of OA). These two sources are also mostly responsible for extremely high polycyclic aromatic hydrocarbon (PAH) concentrations measured with the AMS (campaign average of 2.1 ± 2.0 µg m−3 and frequent peak concentrations above 10 µg m−3). To the best of our knowledge, this is the first data set where the simultaneous extraction of these two primary sources could be achieved in China by conducting on-line AMS measurements at two areas with contrasted emission patterns.

268 citations


Journal ArticleDOI
TL;DR: In this paper, the authors provide evidence for a long-held hypothesis that the biogeochemical effect of urban aerosol or haze pollution is also a contributor to the urban heat island.
Abstract: The urban heat island (UHI), the phenomenon of higher temperatures in urban land than the surrounding rural land, is commonly attributed to changes in biophysical properties of the land surface associated with urbanization. Here we provide evidence for a long-held hypothesis that the biogeochemical effect of urban aerosol or haze pollution is also a contributor to the UHI. Our results are based on satellite observations and urban climate model calculations. We find that a significant factor controlling the nighttime surface UHI across China is the urban–rural difference in the haze pollution level. The average haze contribution to the nighttime surface UHI is 0.7±0.3 K (mean±1 s.e.) for semi-arid cities, which is stronger than that in the humid climate due to a stronger longwave radiative forcing of coarser aerosols. Mitigation of haze pollution therefore provides a co-benefit of reducing heat stress on urban residents. The impact of locally-sourced aerosols on the Urban Heat Island (UHI) effect has been difficult to quantify due to opposing long and shortwave radiation effects. Here, using satellite observations and climate model simulations, the authors reveal that urban haze pollution intensifies the nighttime UHI in China.

255 citations


Journal ArticleDOI
TL;DR: Based on the chemical and isotopic measurements of size-resolved aerosols in urban Beijing, China, this article found that the natural abundance of NH4+ in fine particles varies with the development of haze episodes, ranging from -37.1
Abstract: The reduction of ammonia (NH3) emissions is urgently needed due to its role in aerosol nucleation and growth causing haze formation during its conversion into ammonium (NH4(+)). However, the relative contributions of individual NH3 sources are unclear, and debate remains over whether agricultural emissions dominate atmospheric NH3 in urban areas. Based on the chemical and isotopic measurements of size-resolved aerosols in urban Beijing, China, we find that the natural abundance of (15)N (expressed using δ(15)N values) of NH4(+) in fine particles varies with the development of haze episodes, ranging from -37.1‰ to -21.7‰ during clean/dusty days (relative humidity: ∼ 40%), to -13.1‰ to +5.8‰ during hazy days (relative humidity: 70-90%). After accounting for the isotope exchange between NH3 gas and aerosol NH4(+), the δ(15)N value of the initial NH3 during hazy days is found to be -14.5‰ to -1.6‰, which indicates fossil fuel-based emissions. These emissions contribute 90% of the total NH3 during hazy days in urban Beijing. This work demonstrates the analysis of δ(15)N values of aerosol NH4(+) to be a promising new tool for partitioning atmospheric NH3 sources, providing policy makers with insights into NH3 emissions and secondary aerosols for regulation in urban environments.

241 citations


Journal ArticleDOI
TL;DR: In this article, the authors present simulations of a habitable yet dramatically different phase of Earth's history, when the atmosphere contained a Titan-like, organic-rich haze, and demonstrate using coupled climate-photochemical-microphysical simulations that hazes can cool the planet's surface by about 20 K, but habitable conditions with liquid surface water could be maintained with a relatively thick haze layer (τ∼∼5 at 200nm) even with the fainter young Sun.
Abstract: Recognizing whether a planet can support life is a primary goal of future exoplanet spectral characterization missions, but past research on habitability assessment has largely ignored the vastly different conditions that have existed in our planet's long habitable history. This study presents simulations of a habitable yet dramatically different phase of Earth's history, when the atmosphere contained a Titan-like, organic-rich haze. Prior work has claimed a haze-rich Archean Earth (3.8–2.5 billion years ago) would be frozen due to the haze's cooling effects. However, no previous studies have self-consistently taken into account climate, photochemistry, and fractal hazes. Here, we demonstrate using coupled climate-photochemical-microphysical simulations that hazes can cool the planet's surface by about 20 K, but habitable conditions with liquid surface water could be maintained with a relatively thick haze layer (τ ∼ 5 at 200 nm) even with the fainter young Sun. We find that optically thicker haz...

218 citations


Journal ArticleDOI
TL;DR: The results demonstrate the important role of regional transport, largely from the southwest but also from the east, and of coal combustion emissions for winter haze formation in Beijing and an important downward mixing pathway during the severe haze in 2015 that can lead to rapid increases in certain aerosol species.
Abstract: Rapid formation and evolution of an extreme haze episode in Northern China during winter 2015

214 citations


Journal ArticleDOI
TL;DR: In this paper, the authors analyzed the variation and trend of haze pollution in eastern China for winter of 1960-2012 and identified the major climate forcing factors besides total energy consumption, including variability of the autumn Arctic sea ice extent, local precipitation and surface wind during winter is most influential to haze pollution change.
Abstract: . In this paper, the variation and trend of haze pollution in eastern China for winter of 1960–2012 were analyzed. With the overall increasing number of winter haze days in this period, the 5 decades were divided into three sub-periods based on the changes of winter haze days (WHD) in central North China (30–40° N) and eastern South China (south of 30° N) for east of 109° E mainland China. Results show that WHD kept gradually increasing during 1960–1979, remained stable overall during 1980–1999, and increased fast during 2000–2012. The author identified the major climate forcing factors besides total energy consumption. Among all the possible climate factors, variability of the autumn Arctic sea ice extent, local precipitation and surface wind during winter is most influential to the haze pollution change. The joint effect of fast increase of total energy consumption, rapid decline of Arctic sea ice extent and reduced precipitation and surface winds intensified the haze pollution in central North China after 2000. There is a similar conclusion for haze pollution in eastern South China after 2000, with the precipitation effect being smaller and spatially inconsistent.

209 citations


Journal ArticleDOI
TL;DR: In this article, the online coupled weather research and forecasting-chemistry (WRF-Chem) model was applied to simulate a haze event that happened in January 2010 in the North China Plain (NCP), and was validated against various types of measurements.
Abstract: . The online coupled Weather Research and Forecasting-Chemistry (WRF-Chem) model was applied to simulate a haze event that happened in January 2010 in the North China Plain (NCP), and was validated against various types of measurements. The evaluations indicate that WRF-Chem provides reliable simulations for the 2010 haze event in the NCP. This haze event was mainly caused by high emissions of air pollutants in the NCP and stable weather conditions in winter. Secondary inorganic aerosols also played an important role and cloud chemistry had important contributions. Air pollutants outside Beijing contributed about 64.5 % to the PM2.5 levels in Beijing during this haze event, and most of them are from south Hebei, Tianjin city, Shandong and Henan provinces. In addition, aerosol feedback has important impacts on surface temperature, relative humidity (RH) and wind speeds, and these meteorological variables affect aerosol distribution and formation in turn. In Shijiazhuang, Planetary Boundary Layer (PBL) decreased about 278.2 m and PM2.5 increased more than 20 µg m−3 due to aerosol feedback. It was also shown that black carbon (BC) absorption has significant impacts on meteorology and air quality changes, indicating more attention should be paid to BC from both air pollution control and climate change perspectives.

Journal ArticleDOI
TL;DR: In this paper, the authors report observations of various chemical species in size-segregated particle samples that were collected over 1 year in the urban area of Beijing, a megacity that experiences severe haze episodes.
Abstract: . Additional size-resolved chemical information is needed before the physicochemical characteristics and sources of airborne particles can be understood; however, this information remains unavailable in most regions of China due to lacking measurement data. In this study, we report observations of various chemical species in size-segregated particle samples that were collected over 1 year in the urban area of Beijing, a megacity that experiences severe haze episodes. In addition to fine particles, high concentrations of coarse particles were measured during the periods of haze. The abundance and chemical compositions of the particles in this study were temporally and spatially variable, with major contributions from organic matter and secondary inorganic aerosols. The contributions of organic matter to the particle mass decreased from 37.9 to 31.2 %, and the total contribution of sulfate, nitrate and ammonium increased from 19.1 to 33.9 % between non-haze and haze days, respectively. Due to heterogeneous reactions and hygroscopic growth, the peak concentrations of the organic carbon, cadmium and sulfate, nitrate, ammonium, chloride and potassium shifted from 0.43 to 0.65 µm on non-haze days to 0.65–1.1 µm on haze days. Although the size distributions of lead and thallium were similar during the observation period, their concentrations increased by a factor of more than 1.5 on haze days compared with non-haze days. We observed that sulfate and ammonium, which have a size range of 0.43–0.65 µm, sulfate and nitrate, which have a size range of 0.65–1.1 µm, calcium, which has a size range of 5.8–9 µm, and the meteorological factors of relative humidity and wind speed were responsible for haze pollution when the visibility was less than 10 km. Source apportionment using Positive Matrix Factorization showed six PM2.1 sources and seven PM2.1–9 common sources: secondary inorganic aerosol (25.1 % for fine particles vs. 9.8 % for coarse particles), coal combustion (17.7 % vs. 7.8 %), biomass burning (11.1 % vs. 11.8 %), industrial pollution (12.1 % vs. 5.1 %), road dust (8.4 % vs. 10.9 %), vehicle emissions (19.6 % for fine particles), mineral dust (22.6 % for coarse particles) and organic aerosol (23.6 % for coarse particles). The contributions of the first four factors and vehicle emissions were higher on haze days than non-haze days, while the reverse is true for road dust and mineral dust. The sources' contribution generally increased as the size decreased, with the exception of mineral dust. However, two peaks were consistently found in the fine and coarse particles. In addition, the sources' contribution varied with the wind direction, with coal and oil combustion products increasing during southern flows. This result suggests that future air pollution control strategies should consider wind patterns, especially during episodes of haze. Furthermore, the findings of this study indicated that the PM2.5-based data set is insufficient for determining source control policies for haze in China and that detailed size-resolved information is needed to characterize the important sources of particulate matter in urban regions and better understand severe haze pollution.

Journal ArticleDOI
TL;DR: In this paper, the sulfate aerosol is one of the most important components of fine particles (PM2. 5) in the atmosphere, contributing significantly to the haze formation.
Abstract: . Rapid industrialization and urbanization have caused frequent occurrence of haze in China during wintertime in recent years. The sulfate aerosol is one of the most important components of fine particles (PM2. 5) in the atmosphere, contributing significantly to the haze formation. However, the heterogeneous formation mechanism of sulfate remains poorly characterized. The relationships of the observed sulfate with PM2. 5, iron, and relative humidity in Xi'an, China have been employed to evaluate the mechanism and to develop a parameterization of the sulfate heterogeneous formation involving aerosol water for incorporation into atmospheric chemical transport models. Model simulations with the proposed parameterization can successfully reproduce the observed sulfate rapid growth and diurnal variations in Xi'an and Beijing, China. Reasonable representation of sulfate heterogeneous formation in chemical transport models considerably improves the PM2. 5 simulations, providing the underlying basis for better understanding the haze formation and supporting the design and implementation of emission control strategies.

Journal ArticleDOI
TL;DR: In this paper, the interannual variation of the wintertime fog-haze days across central and eastern China from 1972 to 2014 and its relationship with East Asian winter monsoon (EAWM) were investigated based on the National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis data and the surface observation data from the weather stations in China.
Abstract: The interannual variation of the wintertime fog–haze days across central and eastern China from 1972 to 2014 and its relationship with East Asian winter monsoon (EAWM) are investigated based on the National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis data and the surface observation data from the weather stations in China. The results show that the wintertime fog–haze days across central and eastern China have close relation with EAWM in the interannual time scale. The stronger (weaker) the EAWM is, the less (more) the wintertime fog–haze days are. In strong (weak) EAWM winters, both near-surface winds and vertical shear of horizontal zonal winds strengthen (weaken). The strengthened (weakened) near-surface winds enhance (reduce) the outward transport of fog and haze and are unfavourable (favourable) for their accumulation over central and eastern China. The enlarged (receded) vertical shear of horizontal zonal winds intensifies (abates) the atmospheric baroclinic instability and vertical diffusion, leading to less (more) fog and haze in near-surface. In addition, a strong (weak) EAWM is also unfavourable (favourable) for the maintenance of the fog and haze in the lower troposphere through the anomalous divergence (convergence) associated with the intense anticyclonic (cyclonic) anomalies in the upper troposphere over southern China.

Journal ArticleDOI
TL;DR: The increase in winter haze over eastern China in recent decades due to variations in meteorological parameters and anthropogenic emissions was quantified using observed atmospheric visibility from the National Climatic Data Center Global Summary of Day database for 1980-2014 and simulated PM2.5 concentrations for 1985-2005 from the Goddard Earth-Observing System (GEOS) chemical transport model as discussed by the authors.
Abstract: The increase in winter haze over eastern China in recent decades due to variations in meteorological parameters and anthropogenic emissions was quantified using observed atmospheric visibility from the National Climatic Data Center Global Summary of Day database for 1980–2014 and simulated PM2.5 concentrations for 1985–2005 from the Goddard Earth-Observing System (GEOS) chemical transport model (GEOS-Chem). Observed winter haze days averaged over eastern China (105–122.5°E, 20–45°N) increased from 21 days in 1980 to 42 days in 2014 and from 22 to 30 days between 1985 and 2005. The GEOS-Chem model captured the increasing trend of winter PM2.5 concentrations for 1985–2005, with concentrations averaged over eastern China increasing from 16.1 µg m−3 in 1985 to 38.4 µg m−3 in 2005. Considering variations in both anthropogenic emissions and meteorological parameters, the model simulated an increase in winter surface-layer PM2.5 concentrations of 10.5 (±6.2) µg m−3 decade−1 over eastern China. The increasing trend was only 1.8 (±1.5) µg m−3 decade−1 when variations in meteorological parameters alone were considered. Among the meteorological parameters, the weakening of winds by −0.09 m s−1 decade−1 over 1985–2005 was found to be the dominant factor leading to the decadal increase in winter aerosol concentrations and haze days over eastern China during recent decades.

Journal ArticleDOI
TL;DR: In this paper, a spatial economic weight matrix is constructed and introduced into a spatial autoregressive model to analyse the spatial diffusion effect of PM 2.5 pollution in 152 cities in China considering the spatial attributes of fog and haze alongside the regional economic association.

01 Apr 2016
TL;DR: In this paper, a coupled meteorology and aerosol/chemistry model (WRF-Chem) was used to analyze the feedback between aerosol and meteorological variables in the atmospheric boundary layer over the North China Plain (NCP).
Abstract: . The feedback between aerosol and meteorological variables in the atmospheric boundary layer over the North China Plain (NCP) is analyzed by conducting numerical experiments with and without the aerosol direct and indirect effects via a coupled meteorology and aerosol/chemistry model (WRF-Chem). The numerical experiments are performed for the period of 2–26 January 2013, during which a severe fog–haze event (10–15 January 2013) occurred, with the simulated maximum hourly surface PM2.5 concentration of ~600 ug m−3, minimum atmospheric visibility of ~0.3 km, and 10–100 hours of simulated hourly surface PM2.5 concentration above 300 ug m−3 over NCP. A comparison of model results with aerosol feedback against observations indicates that the model can reproduce the spatial and temporal characteristics of temperature, relative humidity (RH), wind, surface PM2.5 concentration, atmospheric visibility, and aerosol optical depth reasonably well. Analysis of model results with and without aerosol feedback shows that during the fog–haze event aerosols lead to a significant negative radiative forcing of −20 to −140 W m−2 at the surface and a large positive radiative forcing of 20–120 W m−2 in the atmosphere and induce significant changes in meteorological variables with maximum changes during 09:00–18:00 local time (LT) over urban Beijing and Tianjin and south Hebei: the temperature decreases by 0.8–2.8 °C at the surface and increases by 0.1–0.5 °C at around 925 hPa, while RH increases by about 4–12% at the surface and decreases by 1–6% at around 925 hPa. As a result, the aerosol-induced equivalent potential temperature profile change shows that the atmosphere is much more stable and thus the surface wind speed decreases by up to 0.3 m s−1 (10%) and the atmosphere boundary layer height decreases by 40–200 m (5–30%) during the daytime of this severe fog–haze event. Owing to this more stable atmosphere during 09:00–18:00, 10–15~January, compared to the surface PM2.5 concentration from the model results without aerosol feedback, the average surface PM2.5 concentration increases by 10–50 μg m−3 (2–30%) over Beijing, Tianjin, and south Hebei and the maximum increase of hourly surface PM2.5 concentration is around 50 (70%), 90 (60%), and 80 μg m−3 (40%) over Beijing, Tianjin, and south Hebei, respectively. Although the aerosol concentration is maximum at nighttime, the mechanism of feedback, by which meteorological variables increase the aerosol concentration most, occurs during the daytime (around 10:00 and 16:00 LT). The results suggest that aerosol induces a more stable atmosphere, which is favorable for the accumulation of air pollutants, and thus contributes to the formation of fog–haze events.

01 Dec 2016
TL;DR: Analysis of δ(15)N values of aerosol NH4(+) to be a promising new tool for partitioning atmospheric NH3 sources, providing policy makers with insights into NH3 emissions and secondary aerosols for regulation in urban environments is demonstrated.
Abstract: The reduction of ammonia (NH3) emissions is urgently needed due to its role in aerosol nucleation and growth causing haze formation during its conversion into ammonium (NH4(+)). However, the relative contributions of individual NH3 sources are unclear, and debate remains over whether agricultural emissions dominate atmospheric NH3 in urban areas. Based on the chemical and isotopic measurements of size-resolved aerosols in urban Beijing, China, we find that the natural abundance of (15)N (expressed using δ(15)N values) of NH4(+) in fine particles varies with the development of haze episodes, ranging from -37.1‰ to -21.7‰ during clean/dusty days (relative humidity: ∼ 40%), to -13.1‰ to +5.8‰ during hazy days (relative humidity: 70-90%). After accounting for the isotope exchange between NH3 gas and aerosol NH4(+), the δ(15)N value of the initial NH3 during hazy days is found to be -14.5‰ to -1.6‰, which indicates fossil fuel-based emissions. These emissions contribute 90% of the total NH3 during hazy days in urban Beijing. This work demonstrates the analysis of δ(15)N values of aerosol NH4(+) to be a promising new tool for partitioning atmospheric NH3 sources, providing policy makers with insights into NH3 emissions and secondary aerosols for regulation in urban environments.

Journal ArticleDOI
TL;DR: In this paper, the relation between synoptic flow patterns and low visibility events of haze and fog over the North China Plain (NCP), and the contribution of Synoptic Flow Patterns and boundary layer structure to the severe haze events over the NCP in January 2013, was elucidated.

Journal ArticleDOI
TL;DR: The model results indicate that the unique cocktail of high fogwater pH, high concentrations of NO2, SO2, and PM, and small fog droplets are capable of greatly enhancing sulfate formation, which could lead to rapid sulfate production at night and subsequently high PM2.5 loadings in Chinese megacities during fog events.
Abstract: In recent years in a few Chinese megacities, fog events lasting one to a few days have been frequently associated with high levels of aerosol loading characterized by high sulfate (as high as 30 μg m–3), therefore termed as haze-fog events. The concomitant pollution characteristics include high gas-phase mixing ratios of SO2 (up to 71 ppbv) and NO2 (up to 69 ppbv), high aqueous phase pH (5–6), and smaller fog droplets (as low as 2 μm), resulting from intense emissions from fossil fuel combustion and construction activities supplying abundant Ca2+. In this work, we use an observation-based model for secondary inorganic aerosols (OBM-SIA) to simulate sulfate formation pathways under conditions of haze-fog events encountered in Chinese megacities. The OBM analysis has identified, at a typical haze-fogwater pH of 5.6, the most important pathway to be oxidation of S(IV) by dissolved NO2, followed by the heterogeneous reaction of SO2 on the aerosol surface. The aqueous phase oxidation of S(IV) by H2O2 is a very...

Journal ArticleDOI
TL;DR: Wang et al. as discussed by the authors investigated the chemical properties of PM 2.5 and put forward reasonable control measures, daily samples of PM2.5 were collected at an urban site in Beijing from August 4 to September 3, 2012 using two 2-channel samplers.

Journal ArticleDOI
TL;DR: Indonesian peatlands need to be protected and restored to prevent fires and the health, environmental and economic impact that they have on the wider region.
Abstract: Indonesian peatlands need to be protected and restored to prevent fires and the health, environmental and economic impact that they have on the wider region.

Journal ArticleDOI
TL;DR: In this article, a chemical ionization mass spectrometer (CIMS) at a mountain top (957m above sea level) in Hong Kong was used to measure the concentration of Nitryl Chloride (ClNO2) and N2O5.
Abstract: Nitryl chloride (ClNO2) plays potentially important roles in atmospheric chemistry, but its abundance and effect are not fully understood due to the small number of ambient observations of ClNO2 to date. In late autumn 2013, ClNO2 was measured with a chemical ionization mass spectrometer (CIMS) at a mountain top (957 m above sea level) in Hong Kong. During 12 nights with continuous CIMS data, elevated mixing ratios of ClNO2 (>400 parts per trillion by volume) or its precursor N2O5 (>1000 pptv) were observed on six nights, with the highest ever reported ClNO2 (4.7 ppbv, 1 min average) and N2O5 (7.7 ppbv, 1 min average) in one case. Backward particle dispersion calculations driven by winds simulated with a mesoscale meteorological model show that the ClNO2/N2O5-laden air at the high-elevation site was due to transport of urban/industrial pollution north of the site. The highest ClNO2/N2O5 case was observed in a later period of the night and was characterized with extensively processed air and with the presence of nonoceanic chloride. A chemical box model with detailed chlorine chemistry was used to assess the possible impact of the ClNO2 in the well-processed regional plume on next day ozone, as the air mass continued to downwind locations. The results show that the ClNO2 could enhance ozone by 5–16% at the ozone peak or 11–41% daytime ozone production in the following day. This study highlights varying importance of the ClNO2 chemistry in polluted environments and the need to consider this process in photochemical models for prediction of ground-level ozone and haze.

Journal ArticleDOI
TL;DR: The results here facilitate a better understanding of atmospheric fluorescent particle dynamics including those under haze events.

Journal ArticleDOI
TL;DR: This study investigates the effect of regional haze pollution on the yields of rice and wheat in China by calculating the spatial and temporal distributions of aerosol optical depth using the AOD distributions and tropospheric ultraviolet-visible (TUV) model.
Abstract: In China, regional haze pollution is a serious environmental problem. The impact on ecosystem, however, is not clearly understood. This study investigates the effect of regional haze pollution on the yields of rice and wheat in China. The spatial and temporal distributions of aerosol optical depth (AOD) show high particulate pollution in the North China Plain region, Yangtze River Delta region, the central eastern China, and the Si Chuan Basin, coexisted largely with crop growth in time and space. The solar irradiance reaching these regions is estimated to reduce by up to 28-49%, calculated using the AOD distributions and tropospheric ultraviolet-visible (TUV) model. Reduction of solar irradiance in these regions can depress optimal yields of about 45% of rice and 75% of wheat growth in China, leading to 2% reduction in total rice production and 8% reduction in total wheat production in China. However, there are large uncertainties of the estimate related to the diffuse solar radiation. For high diffuse radiation case, the estimate reductions of rice and wheat decrease to 1% and 4.5%, respectively. A further detailed study is needed to clearly understand this effect to meet the growing food demand in the nation in the coming decades.

Journal ArticleDOI
TL;DR: In this paper, the authors proposed a new substrate called plastic-paper, which has a high optical transmittance and high optical haze in a broadband wavelength, and demonstrated an improvement in efficiency for both organic light emitting diodes (OLED) and typical GaAs solar cells.
Abstract: Optoelectronic devices are ubiquitously built on substrates. To increase the efficiencies of light coupling into and out of optoelectronic devices, such as thin film solar cells and flexible lighting, a substrate with high transmittance and high haze is desired. Unfortunately, optical transmittance and optical haze are usually contrasting to each other in common substrates: plastic is highly transparent but with a low optical haze, whereas paper has a high optical haze but a low total transmittance. Herein, we combine these two materials through a simple templated infiltration approach to achieve a new type of substrate, plastic–paper, which has a high optical transmittance (>85%) and high transmittance haze (>90%) in a broadband wavelength. The plastic–paper has an ultra-flat surface, is mechanically flexible, durable in different solvents and compatible with standard processing in semiconductors, which are shown by organic light emitting diodes (OLED) fabricated directly onto the plastic–paper substrate. Plastic–paper leads to improved light coupling into and out of optoelectronic devices and demonstrates an improvement in efficiency for both OLED and typical GaAs solar cells. The fabrication method is also fully scalable with roll-to-roll production. The newly developed low-cost, high-performance transparent and hazy substrate is attractive for a range of optoelectronic devices.

Journal ArticleDOI
Rongrong Wu1, Jing Li1, Yufang Hao1, Yaqi Li1, Limin Zeng1, Shaodong Xie1 
TL;DR: The findings suggested that extremely high levels of VOCs during the haze event was primarily attributed to vehicular emissions, biomass burning and regional transport, as well as stationary synoptic conditions.

Journal ArticleDOI
TL;DR: Findings suggested heavy industries emit large amounts of not only primary PM but also precursor gas pollutants, leading to secondary aerosol formation and harm to human health during haze days, one order of magnitude higher than in other developed cities.

Journal ArticleDOI
TL;DR: In this article, the authors conducted a comprehensive measurement of PM2.5 and its major chemical components (water-soluble inorganic ions, organic carbon (OC), and elemental carbon (EC)) via an online monitoring system in Suzhou, a medium-sized city in Jiangsu province, just east of Shanghai.
Abstract: . Extremely severe haze weather events occurred in many cities in China, especially in the east part of the country, in January 2013. Comprehensive measurements including hourly concentrations of PM2.5 and its major chemical components (water-soluble inorganic ions, organic carbon (OC), and elemental carbon (EC)) and related gas-phase precursors were conducted via an online monitoring system in Suzhou, a medium-sized city in Jiangsu province, just east of Shanghai. PM2.5 (particulate matter with an aerodynamic diameter of 2.5 µm or less) frequently exceeded 150 µg m−3 on hazy days, with the maximum reaching 324 µg m−3 on 14 January 2013. Unfavorable weather conditions (high relative humidity (RH), and low rainfall, wind speed, and atmospheric pressure) were conducive to haze formation. High concentrations of secondary aerosol species (including SO42−, NO3−, NH4+, and SOC) and gaseous precursors were observed during the first two haze events, while elevated primary carbonaceous species emissions were found during the third haze period, pointing to different haze formation mechanisms. Organic matter (OM), (NH4)2SO4, and NH4NO3 were found to be the major contributors to visibility impairment. High concentrations of sulfate and nitrate might be explained by homogeneous gas-phase reactions under low RH conditions and by heterogeneous processes under relatively high RH conditions. Analysis of air mass trajectory clustering and potential source contribution function showed that aerosol pollution in the studied areas was mainly caused by local activities and surrounding sources transported from nearby cities.

Journal ArticleDOI
TL;DR: Haze episodes occurred in Beijing repeatedly in 2013, resulting in 189 polluted days and generally coincided with increasing sulfur and nitrogen oxidation ratios (SOR and NOR), indicating the enhanced production of secondary inorganic species.
Abstract: Haze episodes occurred in Beijing repeatedly in 2013, resulting in 189 polluted days. These episodes differed in terms of sources, formation processes, and chemical composition and thus required different control policies. Therefore, an overview of the similarities and differences among these episodes is needed. For this purpose, we conducted one-year online observations and developed a program that can simultaneously divide haze episodes and identify their shapes. A total of 73 episodes were identified, and their shapes were linked with synoptic conditions. Pure-haze events dominated in wintertime, whereas mixed haze-dust (PM2.5/PM10 < 60%) and mixed haze-fog (Aerosol Water/PM2.5 ∼ 0.3) events dominated in spring and summer-autumn, respectively. For all types, increase of ratio of PM2.5 in PM10 was typically achieved before PM2.5 reached ∼150 μg/m(3). In all PM2.5 species observed, organic matter (OM) was always the most abundant component (18-60%), but it was rarely the driving factor: its relative contribution usually decreased as the pollution level increased. The only OM-driven episode observed was associated with intensive biomass-burning activities. In comparison, haze evolution generally coincided with increasing sulfur and nitrogen oxidation ratios (SOR and NOR), indicating the enhanced production of secondary inorganic species. Applicability of these conclusions required further tests with simultaneously multisite observations.