scispace - formally typeset
Search or ask a question

Showing papers on "Histone H4 published in 2021"


Journal ArticleDOI
TL;DR: Beyond demonstrating a role for histone lactylation in a neurodegenerative disease and showing how multi-layered regulatory impacts attend altered glucose metabolism in microglia, this study illustrates that disrupting a positive feedback loop may support the development of innovative AD therapies.
Abstract: The pro-inflammatory activation of microglia is a hallmark of Alzheimer’s disease (AD), and this process is known to involve a switch in energy metabolism from oxidative phosphorylation (OXPHOS) towards glycolysis. Here, we show how a positive feedback loop in microglia—comprising metabolic, histone lactylation, and transcriptional layers—drives AD pathogenesis, and we demonstrate that inhibiting this vicious cycle in microglia can ameliorate Aβ burden and cognitive deficits in AD model mice. After first detecting elevated histone lactylation in both AD model (5XFAD) mice and AD patient brains, we observed that H4K12la levels are elevated specifically in Aβ plaque-adjacent microglia. We subsequently found that this lactate-dependent histone modification is enriched at the promoters of glycolytic genes (e.g., Pkm). We confirmed that this enrichment activates transcription and thereby increases glycolysis activity, and ultimately demonstrate that a glycolysis/H4K12la/PKM2 positive feedback loop exacerbates microglial dysfunction in AD. Pharmacologic inhibition of PKM2 attenuated microglial activation, and microglia-specific ablation of Pkm2 improved spatial learning and memory in AD mice. Thus, beyond demonstrating a role for histone lactylation in a neurodegenerative disease and showing how multi-layered regulatory impacts attend altered glucose metabolism in microglia, our study illustrates that disrupting a positive feedback loop may support the development of innovative AD therapies.

76 citations


Journal ArticleDOI
22 Jan 2021-Science
TL;DR: In this article, it was shown that acetylation of histone H4 allosterically stimulates yeast Dot1 in a manner distinct from but coordinating with histone ubiquitination (H2BUb).
Abstract: Dot1 (disruptor of telomeric silencing-1), the histone H3 lysine 79 (H3K79) methyltransferase, is conserved throughout evolution, and its deregulation is found in human leukemias. Here, we provide evidence that acetylation of histone H4 allosterically stimulates yeast Dot1 in a manner distinct from but coordinating with histone H2B ubiquitination (H2BUb). We further demonstrate that this stimulatory effect is specific to acetylation of lysine 16 (H4K16ac), a modification central to chromatin structure. We provide a mechanism of this histone cross-talk and show that H4K16ac and H2BUb play crucial roles in H3K79 di- and trimethylation in vitro and in vivo. These data reveal mechanisms that control H3K79 methylation and demonstrate how H4K16ac, H3K79me, and H2BUb function together to regulate gene transcription and gene silencing to ensure optimal maintenance and propagation of an epigenetic state.

50 citations


Journal ArticleDOI
TL;DR: In this paper, DNA methyltransferase 1 (DNMT1) specifically recognizes trimethylated histone H4K20me3 via its first bromo-adjacent-homology domain, and the engagement of DNMT1BAH1-H4K 20me3 ensures heterochromatin targeting of DNA methylation at LINE-1 retrotransposons, and cooperates with the previously reported readout of histone tail modifications.
Abstract: DNA methylation and trimethylated histone H4 Lysine 20 (H4K20me3) constitute two important heterochromatin-enriched marks that frequently cooperate in silencing repetitive elements of the mammalian genome. However, it remains elusive how these two chromatin modifications crosstalk. Here, we report that DNA methyltransferase 1 (DNMT1) specifically 'recognizes' H4K20me3 via its first bromo-adjacent-homology domain (DNMT1BAH1). Engagement of DNMT1BAH1-H4K20me3 ensures heterochromatin targeting of DNMT1 and DNA methylation at LINE-1 retrotransposons, and cooperates with the previously reported readout of histone H3 tail modifications (i.e., H3K9me3 and H3 ubiquitylation) by the RFTS domain to allosterically regulate DNMT1's activity. Interplay between RFTS and BAH1 domains of DNMT1 profoundly impacts DNA methylation at both global and focal levels and genomic resistance to radiation-induced damage. Together, our study establishes a direct link between H4K20me3 and DNA methylation, providing a mechanism in which multivalent recognition of repressive histone modifications by DNMT1 ensures appropriate DNA methylation patterning and genomic stability.

44 citations


Journal ArticleDOI
TL;DR: In this paper, a divergent role for histone H4 lysine 20 mono-methylation (H4K20me1) was described and demonstrated that it directly facilitates chromatin openness and accessibility by disrupting chromatin folding.
Abstract: Histone lysine methylations have primarily been linked to selective recruitment of reader or effector proteins that subsequently modify chromatin regions and mediate genome functions. Here, we describe a divergent role for histone H4 lysine 20 mono-methylation (H4K20me1) and demonstrate that it directly facilitates chromatin openness and accessibility by disrupting chromatin folding. Thus, accumulation of H4K20me1 demarcates highly accessible chromatin at genes, and this is maintained throughout the cell cycle. In vitro, H4K20me1-containing nucleosomal arrays with nucleosome repeat lengths (NRL) of 187 and 197 are less compact than unmethylated (H4K20me0) or trimethylated (H4K20me3) arrays. Concordantly, and in contrast to trimethylated and unmethylated tails, solid-state NMR data shows that H4K20 mono-methylation changes the H4 conformational state and leads to more dynamic histone H4-tails. Notably, the increased chromatin accessibility mediated by H4K20me1 facilitates gene expression, particularly of housekeeping genes. Altogether, we show how the methylation state of a single histone H4 residue operates as a focal point in chromatin structure control. While H4K20me1 directly promotes chromatin openness at highly transcribed genes, it also serves as a stepping-stone for H4K20me3-dependent chromatin compaction. The effect of histone H4 lysine 20 methylation (H4K20me) on chromatin accessibility are not well established. Here the authors show how H4K20 methylation regulates chromatin structure and accessibility to ensure precise transcriptional outputs through the cell cycle using genome-wide approaches, in vitro biophysical assays, and NMR.

38 citations


Journal ArticleDOI
TL;DR: Results suggest that HDA710 is involved in regulating ABA- and salt-stress-responsive genes by altering H4 acetylation levels in their promoters.
Abstract: Plants have evolved numerous mechanisms that assist them in withstanding environmental stresses. Histone deacetylases (HDACs) play crucial roles in plant stress responses; however, their regulatory mechanisms remain poorly understood. Here, we explored the function of HDA710/OsHDAC2, a member of the HDAC RPD3/HDA1 family, in stress tolerance in rice (Oryza sativa). We established that HDA710 localizes to both the nucleus and cytoplasm and is involved in regulating the acetylation of histone H3 and H4, specifically targeting H4K5 and H4K16 under normal conditions. HDA710 transcript accumulation levels were strongly induced by abiotic stresses including drought and salinity, as well as by the phytohormones jasmonic acid (JA) and abscisic acid (ABA). hda710 knockout mutant plants showed enhanced salinity tolerance and reduced ABA sensitivity, whereas transgenic plants overexpressing HDA710 displayed the opposite phenotypes. Moreover, ABA- and salt-stress-responsive genes, such as OsLEA3, OsABI5, OsbZIP72, and OsNHX1, were upregulated in hda710 compared with wild-type plants. These expression differences corresponded with higher levels of histone H4 acetylation in gene promoter regions in hda710 compared with the wild type under ABA and salt-stress treatment. Collectively, these results suggest that HDA710 is involved in regulating ABA- and salt-stress-responsive genes by altering H4 acetylation levels in their promoters. This article is protected by copyright. All rights reserved.

33 citations


Journal ArticleDOI
TL;DR: In this paper, the stability and folding pathways of a tetra-nucleosome were studied using a near-atomistic model that preserves the chemical specificity of protein-DNA interactions at residue and base-pair resolution.
Abstract: The three-dimensional organization of chromatin is expected to play critical roles in regulating genome functions. High-resolution characterization of its structure and dynamics could improve our understanding of gene regulation mechanisms but has remained challenging. Using a near-atomistic model that preserves the chemical specificity of protein-DNA interactions at residue and base-pair resolution, we studied the stability and folding pathways of a tetra-nucleosome. Dynamical simulations performed with an advanced sampling technique uncovered multiple pathways that connect open chromatin configurations with the zigzag crystal structure. Intermediate states along the simulated folding pathways resemble chromatin configurations reported from in situ experiments. We further determined a six-dimensional free energy surface as a function of the inter-nucleosome distances via a deep learning approach. The zigzag structure can indeed be seen as the global minimum of the surface. However, it is not favored by a significant amount relative to the partially unfolded, in situ configurations. Chemical perturbations such as histone H4 tail acetylation and thermal fluctuations can further tilt the energetic balance to stabilize intermediate states. Our study provides insight into the connection between various reported chromatin configurations and has implications on the in situ relevance of the 30 nm fiber.

30 citations


Journal ArticleDOI
TL;DR: In this paper, it was shown that KAT8 switches catalytic activity and function depending on its associated proteins and that, when in the NSL complex, it catalyzes H4K5ac and H 4K8ac required for the expression of essential genes.

23 citations


Journal ArticleDOI
TL;DR: In conclusion, inhibition of JMJD1 enzymatic activity through small molecules is predicted to be beneficial in many different cancers, but not in the few malignancies whereJMJD1 proteins apparently exert tumor-suppressive functions.
Abstract: Epigenetic changes are one underlying cause for cancer development and often due to dysregulation of enzymes modifying DNA or histones. Most Jumonji C domain-containing (JMJD) proteins are histone lysine demethylases (KDM) and therefore epigenetic regulators. One JMJD subfamily consists of JMJD1A/KDM3A, JMJD1B/KDM3B, and JMJD1C/KDM3C that are roughly 50% identical at the amino acid level. All three JMJD1 proteins are capable of removing dimethyl and monomethyl marks from lysine 9 on histone H3 and might also demethylate histone H4 on arginine 3 and nonhistone proteins. Analysis of knockout mice revealed critical roles for JMJD1 proteins in fertility, obesity, metabolic syndrome, and heart disease. Importantly, a plethora of studies demonstrated that especially JMJD1A and JMJD1C are overexpressed in various tumors, stimulate cancer cell proliferation and invasion, and facilitate efficient tumor growth. However, JMJD1A may also inhibit the formation of germ cell tumors. Likewise, JMJD1B appears to be a tumor suppressor in acute myeloid leukemia, but a tumor promoter in other cancers. Notably, by reducing methylation levels on histone H3 lysine 9, JMJD1 proteins can profoundly alter the transcriptome and thereby affect tumorigenesis, including through upregulating oncogenes such as CCND1, JUN, and MYC This epigenetic activity of JMJD1 proteins is sensitive to heavy metals, oncometabolites, oxygen, and reactive oxygen species, whose levels are frequently altered within cancer cells. In conclusion, inhibition of JMJD1 enzymatic activity through small molecules is predicted to be beneficial in many different cancers, but not in the few malignancies where JMJD1 proteins apparently exert tumor-suppressive functions.

22 citations


Journal ArticleDOI
TL;DR: In this article, residue-specific 15 N NMR relaxation rates for histone H4 tails in reconstituted nucleosomes were reported, indicating that histone tails are strongly dynamically disordered, albeit with reduced conformational flexibility compared to a free peptide with the same sequence.
Abstract: The interaction of positively charged N-terminal histone tails with nucleosomal DNA plays an important role in chromatin assembly and regulation, modulating their susceptibility to post-translational modifications and recognition by chromatin-binding proteins. Here, we report residue-specific 15 N NMR relaxation rates for histone H4 tails in reconstituted nucleosomes. These data indicate that H4 tails are strongly dynamically disordered, albeit with reduced conformational flexibility compared to a free peptide with the same sequence. Remarkably, the NMR observables were successfully reproduced in a 2-μs MD trajectory of the nucleosome. This is an important step toward resolving an apparent inconsistency where prior simulations were generally at odds with experimental evidence on conformational dynamics of histone tails. Our findings indicate that histone H4 tails engage in a fuzzy interaction with nucleosomal DNA, underpinned by a variable pattern of short-lived salt bridges and hydrogen bonds, which persists at low ionic strength (0-100 mM NaCl).

19 citations


Journal ArticleDOI
TL;DR: In this article, a peptidic inhibitor (HIPe - Histone Inhibitory Peptide) was developed that targets histone H4 that are released from NETs (Neutrophil Extracellular Traps).
Abstract: A growing body of research has demonstrated that targeting intrinsically disordered proteins (IDPs) and intrinsically disordered protein regions (IDPRs) is feasible and represents a new trending strategy in drug discovery. However, the number of inhibitors targeting IDPs/IDPRs is increasing slowly due to limitations of the methods that can be used to accelerate the discovery process. We have applied structure-based methods to successfully develop the first peptidic inhibitor (HIPe - Histone Inhibitory Peptide) that targets histone H4 that are released from NETs (Neutrophil Extracellular Traps). HIPe binds stably to the disordered N-terminal tail of histone H4, thereby preventing histone H4-induced cell death. Recently, by utilisation of the same state-of-the-art approaches, we have developed a novel peptidic inhibitor (CHIP - Cyclical Histone H2A Interference Peptide) that binds to NET-resident histone H2A, which results in a blockade of monocyte adhesion and consequently reduction in atheroprogression. Here, we present comprehensive details on the computational methods utilised to design and develop HIPe and CHIP. We have exploited protein-protein complexes as starting structures for rational peptide design and then applied binding free energy methods to predict and prioritise binding strength of the designed peptides with histone H4 and H2A. By doing this way, we have modelled only around 20 peptides and from these were able to select 4-5 peptides, from a total of more than a trillion candidate peptides, for functional characterisation in different experiments. The developed computational protocols are generic and can be widely used to design and develop novel inhibitors for other disordered proteins.

16 citations


Journal ArticleDOI
TL;DR: In this paper, a role of mitochondrial activity in controlling the histone acylation/acetylation ratio was demonstrated in an acute lymphoblastic leukemia (ALL) cell model and blasts from individuals with B-precusor ALL (B-ALL).

Journal ArticleDOI
TL;DR: A previously unknown role for HAT1 is highlighted, highlighting its importance in regulating chromatin replication and gene expression, and opens up novel scenarios in which further studies will be required to better understand its function.
Abstract: Acetylation of histone and non-histone proteins is a post-translational modification mostly associated with activation of gene transcription. The first histone acetyltransferase (HAT) identified as modifying newly synthesized histone H4 in yeast was a type B HAT named HAT1. Although it was the first HAT to be discovered, HAT1 remains one of the most poorly studied enzymes in its class. In addition to its well-established role in the cytoplasm, recent findings have revealed new and intriguing aspects of the function of HAT1 in the nucleus. Several studies have described its involvement in regulating different pathways associated with a wide range of diseases, including cancer. This review focuses on our current understanding of HAT1, highlighting its importance in regulating chromatin replication and gene expression. This previously unknown role for HAT1 opens up novel scenarios in which further studies will be required to better understand its function.

Journal ArticleDOI
TL;DR: In this article, the authors characterized the proteome and acetyl proteome (acetylome) profile of normal, paracancerous, and HCC liver tissues in human clinical samples by quantitative proteomics techniques.
Abstract: Lysine acetylation (Kac) as an important posttranslational modification of histones is essential for the regulation of gene expression in hepatocellular carcinoma (HCC). However, the atlas of whole acetylated proteins in HCC tissues and the difference in protein acetylation between normal human tissues and HCC tissues are unknown. In this report, we characterized the proteome and acetyl proteome (acetylome) profile of normal, paracancerous, and HCC liver tissues in human clinical samples by quantitative proteomics techniques. We identified 6781 acetylation sites of 2582 proteins and quantified 2492 acetylation sites of 1190 proteins in normal, paracancerous, and HCC liver tissues. Among them, 15 proteins were multiacetylated with more than 10 lysine residues. The histone acetyltransferases p300 and CBP were found to be hyperacetylated in hepatitis B virus pathway. Moreover, we found that 250 Kac sites of 214 proteins were upregulated and 662 Kac sites of 451 proteins were downregulated in HCC compared with normal liver tissues. Additionally, the acetylation levels of lysine 120 in histone H2B (H2BK120ac), lysine 18 in histone H3.3 (H3.3K18ac), and lysine 77 in histone H4 (H4K77ac) were increased in HCC. Interestingly, the higher levels of H2BK120ac, H3.3K18ac, and H4K77ac were significantly associated with worse prognosis, such as poorer survival and higher recurrence in an independent clinical cohort of HCC patients. Overall, this study lays a foundation for understanding the functions of acetylation in HCC and provides potential prognostic factors for the diagnosis and therapy of HCC.

Journal ArticleDOI
TL;DR: In this paper, the authors used the model grass Brachypodium distachyon (Brachypodium) reference line Bd21 to define the key molecular events in the responses to salt during germination.
Abstract: Excess salinity is a major stress that limits crop yields. Here, we used the model grass Brachypodium distachyon (Brachypodium) reference line Bd21 in order to define the key molecular events in the responses to salt during germination. Salt was applied either throughout the germination period (“salt stress”) or only after root emergence (“salt shock”). Germination was affected at ≥100 mM and root elongation at ≥75 mM NaCl. The expression of arabinogalactan proteins (AGPs), FLA1, FLA10, FLA11, AGP20 and AGP26, which regulate cell wall expansion (especially FLA11), were mostly induced by the “salt stress” but to a lesser extent by “salt shock”. Cytological assessment using two AGP epitopes, JIM8 and JIM13 indicated that “salt stress” increases the fluorescence signals in rhizodermal and exodermal cell wall. Cell division was suppressed at >75 mM NaCl. The cell cycle genes (CDKB1, CDKB2, CYCA3, CYCB1, WEE1) were induced by “salt stress” in a concentration-dependent manner but not CDKA, CYCA and CYCLIN-D4-1-RELATED. Under “salt shock”, the cell cycle genes were optimally expressed at 100 mM NaCl. These changes were consistent with the cell cycle arrest, possibly at the G1 phase. The salt-induced genomic damage was linked with the oxidative events via an increased glutathione accumulation. Histone acetylation and methylation and DNA methylation were visualized by immunofluorescence. Histone H4 acetylation at lysine 5 increased strongly whereas DNA methylation decreased with the application of salt. Taken together, we suggest that salt-induced oxidative stress causes genomic damage but that it also has epigenetic effects, which might modulate the cell cycle and AGP expression gene. Based on these landmarks, we aim to encourage functional genomics studies on the responses of Brachypodium to salt.

Journal ArticleDOI
TL;DR: Zhang et al. as discussed by the authors showed Esa1, the NuA4 complex catalytic subunit, is constitutively expressed and localizes on chromatin loops during meiosis.
Abstract: Meiotic recombination is integrated into and regulated by meiotic chromosomes, which is organized as loop/axis architecture. However, the regulation of chromosome organization is poorly understood. Here, we show Esa1, the NuA4 complex catalytic subunit, is constitutively expressed and localizes on chromatin loops during meiosis. Esa1 plays multiple roles including homolog synapsis, sporulation efficiency, spore viability, and chromosome segregation in meiosis. Detailed analyses show the meiosis-specific depletion of Esa1 results in decreased chromosome axis length independent of another axis length regulator Pds5, which further leads to a decreased number of Mer2 foci, and consequently a decreased number of DNA double-strand breaks, recombination intermediates, and crossover frequency. However, Esa1 depletion does not impair the occurrence of the obligatory crossover required for faithful chromosome segregation, or the strength of crossover interference. Further investigations demonstrate Esa1 regulates chromosome axis length via acetylating the N-terminal tail of histone H4 but not altering transcription program. Therefore, we firstly show a non-chromosome axis component, Esa1, acetylates histone H4 on chromatin loops to regulate chromosome axis length and consequently recombination frequency but does not affect the basic meiotic recombination process. Additionally, Esa1 depletion downregulates middle induced meiotic genes, which probably causing defects in sporulation and chromosome segregation.

Journal ArticleDOI
TL;DR: It is shown that histone H4 acts as neutrophil activator by inducing hydrogen peroxide production, degranulation, cell adhesion, and IL‐8 generation, and H4‐related pathology in sepsis and various forms of lung injury including that induced by viruses like influenza or SAR‐CoV2.
Abstract: Extracellular histones have been implicated as a cause of tissue inflammatory injury in a variety of disorders including sepsis, lung, and liver diseases. However, little is known about their interactions with neutrophils and how this might contribute to injury. Here, it is shown that histone H4 acts as neutrophil activator by inducing hydrogen peroxide production, degranulation, cell adhesion, and IL-8 generation. Histone H4 caused permeabilization of the neutrophil membrane (a phenomenon described in other cell types) leading to accelerated cell death. H4 caused sustained rise in neutrophil intracellular calcium that is necessary for respiratory burst activation and degranulation. Convincing evidence was not found for TLRs or ATP receptors in H4 mediated activation. However, pertussis toxin and wortmannin (inhibitors of G protein and PI3K) inhibited H4-induced hydrogen peroxide production and degranulation. These studies suggest that release of histone H4 in sites of infection or inflammation may potentiate neutrophil activation and promote additional inflammatory responses. These studies may provide a better basis for developing novel therapeutic strategies to block neutrophil extracellular trap (NET) and H4-related pathology in sepsis and various forms of lung injury including that induced by viruses like influenza or SAR-CoV2.

Journal ArticleDOI
11 Feb 2021
TL;DR: In this paper, the SET8-nucleosome complexes with histone H3 and centromeric H3 variant, CENP-A were analyzed and the authors found that the overall cryo-EM structures of SET8 nucleosOME complexes are substantially different from the previous crystal structure models.
Abstract: SET8 is solely responsible for histone H4 lysine-20 (H4K20) monomethylation, which preferentially occurs in nucleosomal H4. However, the underlying mechanism by which SET8 specifically promotes the H4K20 monomethylation in the nucleosome has not been elucidated. Here, we report the cryo-EM structures of the human SET8-nucleosome complexes with histone H3 and the centromeric H3 variant, CENP-A. Surprisingly, we found that the overall cryo-EM structures of the SET8-nucleosome complexes are substantially different from the previous crystal structure models. In the complexes with H3 and CENP-A nucleosomes, SET8 specifically binds the nucleosomal acidic patch via an arginine anchor, composed of the Arg188 and Arg192 residues. Mutational analyses revealed that the interaction between the SET8 arginine anchor and the nucleosomal acidic patch plays an essential role in the H4K20 monomethylation activity. These results provide the groundwork for understanding the mechanism by which SET8 specifically accomplishes the H4K20 monomethylation in the nucleosome.

Journal ArticleDOI
TL;DR: In this paper, it was shown that 8-oxoguanine DNA glycosylase 1 (OGG1) is the main enzyme removing oxidized guanine under oxidative stress and H4R3me2a is involved in this transcriptional regulation.

Journal ArticleDOI
TL;DR: In the ciliate protozoan Tetrahymena thermophila, a single orthologue of human RBBP4 and 7 proteins, RebL1, physically interacts with histone H4 and functions in multiple epigenetic regulatory pathways.
Abstract: Retinoblastoma-binding proteins 4 and 7 (RBBP4 and RBBP7) are two highly homologous human histone chaperones They function in epigenetic regulation as subunits of multiple chromatin-related complexes and have been implicated in numerous cancers Due to their overlapping functions, our understanding of RBBP4 and 7, particularly outside of Opisthokonts, has remained limited Here, we report that in the ciliate protozoan Tetrahymena thermophila a single orthologue of human RBBP4 and 7 proteins, RebL1, physically interacts with histone H4 and functions in multiple epigenetic regulatory pathways Functional proteomics identified conserved functional links for Tetrahymena RebL1 protein as well as human RBBP4 and 7 We found that putative subunits of multiple chromatin-related complexes including CAF1, Hat1, Rpd3, and MuvB, co-purified with RebL1 during Tetrahymena growth and conjugation Iterative proteomics analyses revealed that the cell cycle regulatory MuvB-complex in Tetrahymena is composed of at least five subunits including evolutionarily conserved Lin54, Lin9 and RebL1 proteins Genome-wide analyses indicated that RebL1 and Lin54 (Anqa1) bind within genic and intergenic regions Moreover, Anqa1 targets primarily promoter regions suggesting a role for Tetrahymena MuvB in transcription regulation RebL1 depletion inhibited cellular growth and reduced the expression levels of Anqa1 and Lin9 Consistent with observations in glioblastoma tumors, RebL1 depletion suppressed DNA repair protein Rad51 in Tetrahymena, thus underscoring the evolutionarily conserved functions of RBBP4/7 proteins Our results suggest the essentiality of RebL1 functions in multiple epigenetic regulatory complexes in which it impacts transcription regulation and cellular viability

Journal ArticleDOI
TL;DR: In this article, HAT1-dependent Accessibility Domains (HADs) were found to be critical regulators of the epigenetic inheritance of heterochromatin and suggest a new mechanism for epigenetic regulation of nuclear lamina-heter-chromatin interactions.
Abstract: A central component of the epigenome is the pattern of histone post-translational modifications that play a critical role in the formation of specific chromatin states. Following DNA replication, nascent chromatin is a 1:1 mixture of parental and newly synthesized histones and the transfer of modification patterns from parental histones to new histones is a fundamental step in epigenetic inheritance. Here we report that loss of HAT1, which acetylates lysines 5 and 12 of newly synthesized histone H4 during replication-coupled chromatin assembly, results in the loss of accessibility of large domains of heterochromatin, termed HAT1-dependent Accessibility Domains (HADs). HADs are mega base-scale domains that comprise ∼10% of the mouse genome. HAT1 globally represses H3 K9 me3 levels and HADs correspond to the regions of the genome that display HAT1-dependent increases in H3 K9me3 peak density. HADs display a high degree of overlap with a subset of Lamin-Associated Domains (LADs). HAT1 is required to maintain nuclear structure and integrity. These results indicate that HAT1 and the acetylation of newly synthesized histones may be critical regulators of the epigenetic inheritance of heterochromatin and suggest a new mechanism for the epigenetic regulation of nuclear lamina-heterochromatin interactions.

Journal ArticleDOI
27 Oct 2021-Life
TL;DR: In this article, the major protein arginine methyltransferase in mammals, catalyzes monomethylation and asymmetric dimethylation of asymmetric side chains in proteins.
Abstract: PRMT1, the major protein arginine methyltransferase in mammals, catalyzes monomethylation and asymmetric dimethylation of arginine side chains in proteins. Initially described as a regulator of chromatin dynamics through the methylation of histone H4 at arginine 3 (H4R3), numerous non-histone substrates have since been identified. The variety of these substrates underlines the essential role played by PRMT1 in a large number of biological processes such as transcriptional regulation, signal transduction or DNA repair. This review will provide an overview of the structural, biochemical and cellular features of PRMT1. After a description of the genomic organization and protein structure of PRMT1, special consideration was given to the regulation of PRMT1 enzymatic activity. Finally, we discuss the involvement of PRMT1 in embryonic development, DNA damage repair, as well as its participation in the initiation and progression of several types of cancers.

Journal ArticleDOI
12 Apr 2021-Thyroid
TL;DR: SRC3 (-/-) tadpoles had inhibited/delayed intestinal remodeling during natural and T3-induced metamorphosis, including reduced adult intestinal stem cell proliferation and apoptosis of larval epithelial cells.
Abstract: Background: Thyroid hormone (triiodothyronine [T3]) plays an important role in regulating vertebrate developmental, cellular, and metabolic processes via T3 receptor (TR). Liganded TR recruit coactivator complexes that include steroid receptor coactivators (SRC1, SRC2 or SRC3), which are histone acetyltransferases, to T3-responsive promoters. The functions of endogenous coactivators during T3-dependent mammalian adult organ development remain largely unclear, in part, due to the difficulty to access and manipulate late-stage embryos and neonates. We use Xenopus metamorphosis as a model for postembryonic development in vertebrates. This process is controlled by T3, involves drastic changes in every organ/tissue, and can be easily manipulated. We have previously found that SRC3 was upregulated in the intestine during amphibian metamorphosis. Methods: To determine the function of endogenous SRC3 during intestinal remodeling, we have generated Xenopus tropicalis animals lacking a functional SRC3 gene and analyzed the resulting phenotype. Results: Although removing SRC3 had no apparent effect on external development and animal gross morphology, the SRC3 (-/-) tadpoles displayed a reduction in the acetylation of histone H4 in the intestine compared with that in wild-type animals. Further, the expression of TR target genes was also reduced in SRC3 (-/-) tadpoles during intestinal remodeling. Importantly, SRC3 (-/-) tadpoles had inhibited/delayed intestinal remodeling during natural and T3-induced metamorphosis, including reduced adult intestinal stem cell proliferation and apoptosis of larval epithelial cells. Conclusion: Our results, thus, demonstrate that SRC3 is a critical component of the TR-signaling pathway in vivo during intestinal remodeling.

Journal ArticleDOI
04 May 2021-eLife
TL;DR: In this paper, the authors employed transcript-specific RNA pulldown and RNA-seq/RT-PCR to identify yeast mRNAs that co-precipitate as ribonucleoprotein (RNP) complexes.
Abstract: Prokaryotes utilize polycistronic messages (operons) to co-translate proteins involved in the same biological processes. Whether eukaryotes achieve similar regulation by selectively assembling and translating monocistronic messages derived from different chromosomes is unknown. We employed transcript-specific RNA pulldowns and RNA-seq/RT-PCR to identify yeast mRNAs that co-precipitate as ribonucleoprotein (RNP) complexes. Consistent with the hypothesis of eukaryotic RNA operons, mRNAs encoding components of the mating pathway, heat shock proteins, and mitochondrial outer membrane proteins multiplex in trans, forming discrete messenger ribonucleoprotein (mRNP) complexes (called transperons). Chromatin capture and allele tagging experiments reveal that genes encoding multiplexed mRNAs physically interact; thus, RNA assembly may result from co-regulated gene expression. Transperon assembly and function depends upon histone H4, and its depletion leads to defects in RNA multiplexing, decreased pheromone responsiveness and mating, and increased heat shock sensitivity. We propose that intergenic associations and non-canonical histone H4 functions contribute to transperon formation in eukaryotic cells and regulate cell physiology.

Journal ArticleDOI
TL;DR: In this paper, the nuclear kinesin, KIF18B, was identified as a 53BP1-interacting protein and defined its role in DNA double-strand break repair.

Posted ContentDOI
21 Oct 2021-bioRxiv
TL;DR: Zhang et al. as discussed by the authors determined how changes of local chemical environment on the N-terminal SGRGK sequence regulate Nα-catalyzed Nα acetylation on histone H4/H2A.
Abstract: Acetylation at the α-N-terminus (Nα) is one of the most abundant modifications detected on histone H4 and H2A, which is catalyzed by N-terminal acetyltransferase D (NatD). NatD substrate recognition motif, N-terminal SGRGK, is enriched with frequent oncohistone mutations and post-translational modifications (PTMs). However, there is no information on how oncohistone mutations and other PTMs affect NatD-catalyzed acetylation. Herein, we determined how changes of local chemical environment on the N-terminal SGRGK sequence regulate NatD-catalyzed Nα acetylation on histone H4/H2A. Our studies indicate that all oncohistone mutations at SGRG suppressed the catalytic efficiency of NatD. Meanwhile, H4 serine 1 phosphorylation and arginine 3 methylation also negatively affect the NatD activity, but the lysine 5 acetylation has a marginal effect on NatD. This work reveals the impacts of oncohistone mutations on NatD activity and unravels the crosstalk between NatD and PTMs. To our knowledge, this is the first report on the potential regulatory mechanism of NatD, highlighting different revenues to interrogate the NatD-mediated pathway in the future.

Journal ArticleDOI
17 May 2021-PLOS ONE
TL;DR: In this article, the authors showed that histone H4 can induce extracellular trap (NET) formation in neutrophils in a calcium and PAD4 dependent manner, which is characterized by the release of nuclear chromatin to form a chromatin network.
Abstract: Peptidylarginine deiminase 4 (PAD4) catalyzes posttranslational modification of many target proteins through converting protein arginine or mono-methylarginine to citrulline. Neutrophil extracellular trap (NET) formation is the most dramatic manifestation of PAD4-mediated hypercitrullination reaction in neutrophils, which is characterized by the release of nuclear chromatin to form a chromatin network in the extracellular space. Histones H4, one of the major protein components of chromatin, is released into the extracellular space during sepsis, trauma, and ischemia-reperfusion injury and can also be released during the process of NET formation, along with its citrullinated form. The present study showed that histone H4 can induce NET formation in a calcium and PAD4 dependent manner. Histone H4 caused permeabilization of the neutrophil membrane and sustained rise in intracellular calcium that is necessary for activation of PAD4. In comparison, citrullinated histone H4 induced less calcium influx compared with its native form, leading to reduced NET formation. These studies suggest that citrullinated histone H4 could serve as a brake in the pathology of NETs, slowing down the vicious circle between histone H4 and NETs.

Journal ArticleDOI
TL;DR: The evolutionary conserved N-alpha acetyltransferase Naa40p is among the most selective N-terminal NATs (NATs) identified to date as discussed by the authors.
Abstract: The evolutionary conserved N-alpha acetyltransferase Naa40p is among the most selective N-terminal acetyltransferases (NATs) identified to date Here we identified a conserved N-terminally truncated Naa40p proteoform named Naa40p25 or short Naa40p (Naa40S) Intriguingly, although upon ectopic expression in yeast, both Naa40p proteoforms were capable of restoring N-terminal acetylation of the characterized yeast histone H2A Naa40p substrate, the Naa40p histone H4 substrate remained N-terminally free in human haploid cells specifically deleted for canonical Naa40p27 or 237 amino acid long Naa40p (Naa40L), but expressing Naa40S Interestingly, human Naa40L and Naa40S displayed differential expression and subcellular localization patterns by exhibiting a principal nuclear and cytoplasmic localization, respectively Furthermore, Naa40L was shown to be N-terminally myristoylated and to interact with N-myristoyltransferase 1 (NMT1), implicating NMT1 in steering Naa40L nuclear import Differential interactomics data obtained by biotin-dependent proximity labeling (BioID) further hints to context-dependent roles of Naa40p proteoforms More specifically, with Naa40S representing the main co-translationally acting actor, the interactome of Naa40L was enriched for nucleolar proteins implicated in ribosome biogenesis and the assembly of ribonucleoprotein particles, overall indicating a proteoform-specific segregation of previously reported Naa40p activities Finally, the yeast histone variant H2AZ and the transcriptionally regulatory protein Lge1 were identified as novel Naa40p substrates, expanding the restricted substrate repertoire of Naa40p with two additional members and further confirming Lge1 as being the first redundant yNatA and yNatD substrate identified to date

Journal ArticleDOI
14 Oct 2021-Oncogene
TL;DR: In this paper, gain-and loss-of-function studies demonstrate that PCK1 deficiency and hyper O-GlcNAcylation can induce hepatocellular carcinoma (HCC) metastasis.
Abstract: Aberrant glucose metabolism and elevated O-linked β-N-acetylglucosamine modification (O-GlcNAcylation) are hallmarks of hepatocellular carcinoma (HCC). Loss of phosphoenolpyruvate carboxykinase 1 (PCK1), the major rate-limiting enzyme of hepatic gluconeogenesis, increases hexosamine biosynthetic pathway (HBP)-mediated protein O-GlcNAcylation in hepatoma cell and promotes cell growth and proliferation. However, whether PCK1 deficiency and hyper O-GlcNAcylation can induce HCC metastasis is largely unknown. Here, gain- and loss-of-function studies demonstrate that PCK1 suppresses HCC metastasis in vitro and in vivo. Specifically, lysine acetyltransferase 5 (KAT5), belonging to the MYST family of histone acetyltransferases (HAT), is highly modified by O-GlcNAcylation in PCK1 knockout hepatoma cells. Mechanistically, PCK1 depletion suppressed KAT5 ubiquitination by increasing its O-GlcNAcylation, thereby stabilizing KAT5. KAT5 O-GlcNAcylation epigenetically activates TWIST1 expression via histone H4 acetylation, and enhances MMP9 and MMP14 expression via c-Myc acetylation, thus promoting epithelial-mesenchymal transition (EMT) in HCC. In addition, targeting HBP-mediated O-GlcNAcylation of KAT5 inhibits lung metastasis of HCC in hepatospecific Pck1-deletion mice. Collectively, our findings demonstrate that PCK1 depletion increases O-GlcNAcylation of KAT5, epigenetically induces TWIST1 expression and promotes HCC metastasis, and link metabolic enzyme, post-translational modification (PTM) with epigenetic regulation.

Journal ArticleDOI
TL;DR: In this paper, a conserved function of the yeast Bromodomain Factor 1 (Bdf1) and its human counterpart TAF1 is reported in promoting DNA double-stranded break repair by homologous recombination (HR).
Abstract: Histone acetylation is a key histone post-translational modification that shapes chromatin structure, dynamics, and function. Bromodomain (BRD) proteins, the readers of acetyl-lysines, are located in the center of the histone acetylation-signaling network. How they regulate DNA repair and genome stability remains poorly understood. Here, a conserved function of the yeast Bromodomain Factor 1 (Bdf1) and its human counterpart TAF1 is reported in promoting DNA double-stranded break repair by homologous recombination (HR). Depletion of either yeast BDF1 or human TAF1, or disruption of their BRDs impairs DNA end resection, Replication Protein A (RPA) and Rad51 loading, and HR repair, causing genome instability and hypersensitivity to DNA damage. Mechanistically, it is shown that Bdf1 preferentially binds the DNA damage-induced histone H4 acetylation (H4Ac) via the BRD motifs, leading to its chromatin recruitment. Meanwhile, Bdf1 physically interacts with RPA, and this interaction facilitates RPA loading in the chromatin context and the subsequent HR repair. Similarly, TAF1 also interacts with H4Ac or RPA. Thus, Bdf1 and TAF1 appear to share a conserved mechanism in linking the HR repair to chromatin acetylation in preserving genome integrity.

Journal ArticleDOI
TL;DR: This article found that the intestinal distension caused by Pseudomonas aeruginosa induces histone H4 Lys8 acetylation (H4K8ac) in the germline of Caenorhabditis elegans, which is required for both a bacterial aversion behavior and its transmission to the next generation.
Abstract: The gut-neural axis plays a critical role in the control of several physiological processes, including the communication of signals from the microbiome to the nervous system, which affects learning, memory, and behavior. However, the pathways involved in gut-neural signaling of gut-governed behaviors remain unclear. We found that the intestinal distension caused by the bacterium Pseudomonas aeruginosa induces histone H4 Lys8 acetylation (H4K8ac) in the germline of Caenorhabditis elegans, which is required for both a bacterial aversion behavior and its transmission to the next generation. We show that induction of H4K8ac in the germline is essential for bacterial aversion and that a 14-3-3 chaperone protein family member, PAR-5, is required for H4K8ac. Our findings highlight a role for H4K8ac in the germline not only in the intergenerational transmission of pathogen avoidance but also in the transmission of pathogenic cues that travel through the gut-neural axis to control the aversive behavior.