scispace - formally typeset
Search or ask a question

Showing papers on "Integrated stress response published in 2016"


Journal ArticleDOI
TL;DR: Current understanding of the ISR signaling is reviewed and how it regulates cell fate under diverse types of stress is reviewed.
Abstract: In response to diverse stress stimuli, eukaryotic cells activate a common adaptive pathway, termed the integrated stress response (ISR), to restore cellular homeostasis. The core event in this pathway is the phosphorylation of eukaryotic translation initiation factor 2 alpha (eIF2α) by one of four members of the eIF2α kinase family, which leads to a decrease in global protein synthesis and the induction of selected genes, including the transcription factor ATF4, that together promote cellular recovery. The gene expression program activated by the ISR optimizes the cellular response to stress and is dependent on the cellular context, as well as on the nature and intensity of the stress stimuli. Although the ISR is primarily a pro‐survival, homeostatic program, exposure to severe stress can drive signaling toward cell death. Here, we review current understanding of the ISR signaling and how it regulates cell fate under diverse types of stress.

1,480 citations


Journal ArticleDOI
TL;DR: Endoplasmic reticulum stress is a common feature in the pathology of numerous diseases because it plays a role in neurodegeneration, stroke, cancer, metabolic diseases and inflammation.
Abstract: The endoplasmic reticulum is an organelle with multiple functions. The synthesis of transmembrane proteins and proteins that are to be secreted occurs in this organelle. Many conditions that impose stress on cells, including hypoxia, starvation, infections and changes in secretory needs, challenge the folding capacity of the cell and promote endoplasmic reticulum stress. The cellular response involves the activation of sensors that transduce signaling cascades with the aim of restoring homeostasis. This is known as the unfolded protein response, which also intersects with the integrated stress response that reduces protein synthesis through inactivation of the initiation factor eIF2α. Central to the unfolded protein response are the sensors PERK, IRE1 and ATF6, as well as other signaling nodes such as c-Jun N-terminal kinase 1 (JNK) and the downstream transcription factors XBP1, ATF4 and CHOP. These proteins aim to restore homeostasis, but they can also induce cell death, which has been shown to occur by necroptosis and, more commonly, through the regulation of Bcl-2 family proteins (Bim, Noxa and Puma) that leads to mitochondrial apoptosis. In addition, endoplasmic reticulum stress and proteotoxic stress have been shown to induce TRAIL receptors and activation of caspase-8. Endoplasmic reticulum stress is a common feature in the pathology of numerous diseases because it plays a role in neurodegeneration, stroke, cancer, metabolic diseases and inflammation. Understanding how cells react to endoplasmic reticulum stress can accelerate discovery of drugs against these diseases.

696 citations


Journal ArticleDOI
TL;DR: This Review focuses on the pathways that coordinate the communication between mitochondria and the nucleus during homeostasis and mitochondrial stress, and discusses how mitonuclear communication safeguards cellular and organismal fitness and regulates lifespan.
Abstract: Mitochondria participate in crucial cellular processes such as energy harvesting and intermediate metabolism. Although mitochondria possess their own genome--a vestige of their bacterial origins and endosymbiotic evolution--most mitochondrial proteins are encoded in the nucleus. The expression of the mitochondrial proteome hence requires tight coordination between the two genomes to adapt mitochondrial function to the ever-changing cellular milieu. In this Review, we focus on the pathways that coordinate the communication between mitochondria and the nucleus during homeostasis and mitochondrial stress. These pathways include nucleus-to-mitochondria (anterograde) and mitochondria-to-nucleus (retrograde) communication, mitonuclear feedback signalling and proteostasis regulation, the integrated stress response and non-cell-autonomous communication. We discuss how mitonuclear communication safeguards cellular and organismal fitness and regulates lifespan.

511 citations


Journal ArticleDOI
TL;DR: This review presents key features of uORFs that serve to optimize translational control that is essential for regulation of cell fate in response to environmental stresses.

278 citations


Journal ArticleDOI
TL;DR: Under conditions of prolonged ER stress, TFEB and TFE3 contribute to cell death, thus revealing an unexpected role for these proteins in controlling cell fate.
Abstract: To reestablish homeostasis and mitigate stress, cells must activate a series of adaptive intracellular signaling pathways. The participation of the transcription factors TFEB and TFE3 in cellular adaptation to starvation is well established. Here, we show that TFEB and TFE3 also play an important role in the cellular response to ER stress. Treatment with ER stressors causes translocation of TFEB and TFE3 to the nucleus in a process that is dependent on PERK and calcineurin but not on mTORC1. Activated TFEB and TFE3 enhance cellular response to stress by inducing direct transcriptional upregulation of ATF4 and other UPR genes. Under conditions of prolonged ER stress, TFEB and TFE3 contribute to cell death, thus revealing an unexpected role for these proteins in controlling cell fate. This work evidences a broader role of TFEB and TFE3 in the cellular response to stress than previously anticipated and reveals an integrated cooperation between different cellular stress pathways.

207 citations


Journal ArticleDOI
24 Mar 2016-Nature
TL;DR: It is demonstrated in mice that GCN2 controls intestinal inflammation by suppressing inflammasome activation and in vivo blockade of ROS and IL-1β resulted in inhibition of TH17 responses and reduced inflammation in Gcn2−/− mice.
Abstract: The integrated stress response (ISR) is a homeostatic mechanism by which eukaryotic cells sense and respond to stress-inducing signals, such as amino acid starvation. General controlled non-repressed (GCN2) kinase is a key orchestrator of the ISR, and modulates protein synthesis in response to amino acid starvation. Here we demonstrate in mice that GCN2 controls intestinal inflammation by suppressing inflammasome activation. Enhanced activation of ISR was observed in intestinal antigen presenting cells (APCs) and epithelial cells during amino acid starvation, or intestinal inflammation. Genetic deletion of Gcn2 (also known as Eif2ka4) in CD11c(+) APCs or intestinal epithelial cells resulted in enhanced intestinal inflammation and T helper 17 cell (TH17) responses, owing to enhanced inflammasome activation and interleukin (IL)-1β production. This was caused by reduced autophagy in Gcn2(-/-) intestinal APCs and epithelial cells, leading to increased reactive oxygen species (ROS), a potent activator of inflammasomes. Thus, conditional ablation of Atg5 or Atg7 in intestinal APCs resulted in enhanced ROS and TH17 responses. Furthermore, in vivo blockade of ROS and IL-1β resulted in inhibition of TH17 responses and reduced inflammation in Gcn2(-/-) mice. Importantly, acute amino acid starvation suppressed intestinal inflammation via a mechanism dependent on GCN2. These results reveal a mechanism that couples amino acid sensing with control of intestinal inflammation via GCN2.

202 citations


Journal ArticleDOI
TL;DR: It is found that ONC201 triggered an increase in TRAIL abundance and cell death through an integrated stress response (ISR) involving the transcription factor ATF4, the transactivator CHOP, and the TRAIL receptor DR5.
Abstract: ONC201 (also called TIC10) is a small molecule that inactivates the cell proliferation- and cell survival-promoting kinases Akt and ERK and induces cell death through the proapoptotic protein TRAIL. ONC201 is currently in early-phase clinical testing for various malignancies. We found through gene expression and protein analyses that ONC201 triggered an increase in TRAIL abundance and cell death through an integrated stress response (ISR) involving the transcription factor ATF4, the transactivator CHOP, and the TRAIL receptor DR5. ATF4 was not activated in ONC201-resistant cancer cells, and in ONC201-sensitive cells, knockdown of ATF4 or CHOP partially abrogated ONC201-induced cytotoxicity and diminished the ONC201-stimulated increase in DR5 abundance. The activation of ATF4 in response to ONC201 required the kinases HRI and PKR, which phosphorylate and activate the translation initiation factor eIF2α. ONC201 rapidly triggered cell cycle arrest, which was associated with decreased abundance of cyclin D1, decreased activity of the kinase complex mTORC1, and dephosphorylation of the retinoblastoma (Rb) protein. The abundance of X-linked inhibitor of apoptosis protein (XIAP) negatively correlated with the extent of apoptosis in response to ONC201. These effects of ONC201 were independent of whether cancer cells had normal or mutant p53. Thus, ONC201 induces cell death through the coordinated induction of TRAIL by an ISR pathway.

143 citations


Journal ArticleDOI
TL;DR: The results suggest that by inducing an atypical ISR and p53-independent apoptosis, ONC201 has clinical potential in hematological malignancies.
Abstract: The clinical challenge posed by p53 abnormalities in hematological malignancies requires therapeutic strategies other than standard genotoxic chemotherapies. ONC201 is a first-in-class small molecule that activates p53-independent apoptosis, has a benign safety profile, and is in early clinical trials. We found that ONC201 caused p53-independent apoptosis and cell cycle arrest in cell lines and in mantle cell lymphoma (MCL) and acute myeloid leukemia (AML) samples from patients; these included samples from patients with genetic abnormalities associated with poor prognosis or cells that had developed resistance to the nongenotoxic agents ibrutinib and bortezomib. Moreover, ONC201 caused apoptosis in stem and progenitor AML cells and abrogated the engraftment of leukemic stem cells in mice while sparing normal bone marrow cells. ONC201 caused changes in gene expression similar to those caused by the unfolded protein response (UPR) and integrated stress responses (ISRs), which increase the translation of the transcription factor ATF4 through an increase in the phosphorylation of the translation initiation factor eIF2α. However, unlike the UPR and ISR, the increase in ATF4 abundance in ONC201-treated hematopoietic cells promoted apoptosis and did not depend on increased phosphorylation of eIF2α. ONC201 also inhibited mammalian target of rapamycin complex 1 (mTORC1) signaling, likely through ATF4-mediated induction of the mTORC1 inhibitor DDIT4. Overexpression of BCL-2 protected against ONC201-induced apoptosis, and the combination of ONC201 and the BCL-2 antagonist ABT-199 synergistically increased apoptosis. Thus, our results suggest that by inducing an atypical ISR and p53-independent apoptosis, ONC201 has clinical potential in hematological malignancies.

135 citations


Journal ArticleDOI
16 Apr 2016-eLife
TL;DR: It is found that the ISR attenuates neurodegeneration in C57BL/6J-Gtpbp2nmf205-/- mice, underscoring the importance of cellular and stress context on the outcome of activation of this pathway.
Abstract: Ribosome stalling during translation has recently been shown to cause neurodegeneration, yet the signaling pathways triggered by stalled elongation complexes are unknown. To investigate these pathways we analyzed the brain of C57BL/6J-Gtpbp2(nmf205)(-/-) mice in which neuronal elongation complexes are stalled at AGA codons due to deficiencies in a tRNA(Arg)UCU tRNA and GTPBP2, a mammalian ribosome rescue factor. Increased levels of phosphorylation of eIF2α (Ser51) were detected prior to neurodegeneration in these mice and transcriptome analysis demonstrated activation of ATF4, a key transcription factor in the integrated stress response (ISR) pathway. Genetic experiments showed that this pathway was activated by the eIF2α kinase, GCN2, in an apparent deacylated tRNA-independent fashion. Further we found that the ISR attenuates neurodegeneration in C57BL/6J-Gtpbp2(nmf205)(-/-) mice, underscoring the importance of cellular and stress context on the outcome of activation of this pathway. These results demonstrate the critical interplay between translation elongation and initiation in regulating neuron survival during cellular stress.

124 citations


Journal ArticleDOI
02 Mar 2016-Diabetes
TL;DR: It is found that the absence of GCN2 had no effect on the ability of MR to reduce body weight or adiposity, increase energy intake and expenditure, increase hepatic transcription and release of fibroblast growth factor 21, or improve insulin sensitivity, and a novel glutathione-sensing mechanism is uncovered to link dietary MR to its metabolic phenotype.
Abstract: Restricting availability of essential amino acids (EAAs) limits aminoacylation of tRNAs by their cognate EAAs and activates the nutrient-sensing kinase, general control nonderepressible 2 (GCN2). Activated GCN2 phosphorylates eukaryotic initiation factor 2 (eIF2), altering gene-specific translation and initiating a transcriptional program collectively described as the integrated stress response (ISR). Central GCN2 activation by EAA deprivation is also linked to an acute aversive feeding response. Dietary methionine restriction (MR) produces a well-documented series of physiological responses (increased energy intake and expenditure, decreased adiposity, and increased insulin sensitivity), but the role of GCN2 in mediating them is unknown. Using Gcn2(-/-) mice, we found that the absence of GCN2 had no effect on the ability of MR to reduce body weight or adiposity, increase energy intake and expenditure, increase hepatic transcription and release of fibroblast growth factor 21, or improve insulin sensitivity. Interestingly, hepatic eIF2 phosphorylation by MR was uncompromised in Gcn2(-/-) mice. Instead, protein kinase R-like endoplasmic reticulum (ER) kinase (PERK) was activated in both intact and Gcn2(-/-) mice. PERK activation corresponded with induction of the ISR and the nuclear respiratory factor 2 antioxidant program but not ER stress. These data uncover a novel glutathione-sensing mechanism that functions independently of GCN2 to link dietary MR to its metabolic phenotype.

113 citations


Journal ArticleDOI
TL;DR: Cellular cysteine and its derivative GSH cooperate to regulate mTORC1 pathway, the ISR and ferroptosis, further supporting their cooperation in the regulation of cell signaling.
Abstract: Although essential amino acids regulate mechanistic target of rapamycin complex 1 (mTORC1) and the integrated stress response (ISR), the role of cysteine is unknown. We found that in hepatoma HepG2 cells, cystine (oxidized form of cysteine) activated mTORC1 and suppressed the ISR. Cystine deprivation induced GSH efflux and extracellular degradation, which aimed to restore cellular cysteine. Inhibition of γ-glutamyl transpeptidase (GGT) impaired the ability of GSH or cell-permeable GSH to restore mTORC1 signaling and the ISR, suggesting that the capacity of GSH to release cysteine, but not GSH per se, regulated the signaling networks. Inhibition of protein translation restored both mTORC1 signaling and the ISR during cystine starvation, suggesting the bulk of cellular cysteine was committed to the biosynthetic process. Cellular cysteine and GSH displayed overlapping protective roles in the suppression of ferroptosis, further supporting their cooperation in the regulation of cell signaling. Thus, cellular cysteine and its derivative GSH cooperate to regulate mTORC1 pathway, the ISR and ferroptosis.

Journal ArticleDOI
TL;DR: A novel stress response to ammonia in the muscle that decreases muscle protein content that can be reversed by supplementation with the amino acid l-leucine is identified.

Journal ArticleDOI
TL;DR: These findings identify C/EBPγ as a novel antioxidant regulator and an obligatory ATF4 partner that controls redox homeostasis in normal and cancerous cells.
Abstract: The integrated stress response (ISR) controls cellular adaptations to nutrient deprivation, redox imbalances, and endoplasmic reticulum (ER) stress. ISR genes are upregulated in stressed cells, primarily by the bZIP transcription factor ATF4 through its recruitment to cis-regulatory C/EBP:ATF response elements (CAREs) together with a dimeric partner of uncertain identity. Here, we show that C/EBPγ:ATF4 heterodimers, but not C/EBPβ:ATF4 dimers, are the predominant CARE-binding species in stressed cells. C/EBPγ and ATF4 associate with genomic CAREs in a mutually dependent manner and coregulate many ISR genes. In contrast, the C/EBP family members C/EBPβ and C/EBP homologous protein (CHOP) were largely dispensable for induction of stress genes. Cebpg(-/-) mouse embryonic fibroblasts (MEFs) proliferate poorly and exhibit oxidative stress due to reduced glutathione levels and impaired expression of several glutathione biosynthesis pathway genes. Cebpg(-/-) mice (C57BL/6 background) display reduced body size and microphthalmia, similar to ATF4-null animals. In addition, C/EBPγ-deficient newborns die from atelectasis and respiratory failure, which can be mitigated by in utero exposure to the antioxidant, N-acetyl-cysteine. Cebpg(-/-) mice on a mixed strain background showed improved viability but, upon aging, developed significantly fewer malignant solid tumors than WT animals. Our findings identify C/EBPγ as a novel antioxidant regulator and an obligatory ATF4 partner that controls redox homeostasis in normal and cancerous cells.

Journal ArticleDOI
TL;DR: In this article, metabolic changes in a well-characterized cell model of familial ALS, the motor neuronal NSC-34 line stably expressing human wild-type Cu/Zn superoxide dismutase (wtSOD1) or mutant G93A (G93ASOD1), were examined.
Abstract: Defects in energy metabolism are potential pathogenic mechanisms in amyotrophic lateral sclerosis (ALS), a rapidly fatal disease with no cure. The mechanisms through which this occurs remain elusive and their understanding may prove therapeutically useful. We used metabolomics and stable isotope tracers to examine metabolic changes in a well-characterized cell model of familial ALS, the motor neuronal NSC-34 line stably expressing human wild-type Cu/Zn superoxide dismutase (wtSOD1) or mutant G93A (G93ASOD1). Our findings indicate that wt and G93ASOD1 expression both enhanced glucose metabolism under serum deprivation. However, in wtSOD1 cells, this phenotype increased supply of amino acids for protein and glutathione synthesis, while in G93ASOD1 cells it was associated with death, aerobic glycolysis, and a broad dysregulation of amino acid homeostasis. Aerobic glycolysis was mainly due to induction of pyruvate dehydrogenase kinase 1. Our study thus provides novel insight into the role of deranged energy metabolism as a cause of poor adaptation to stress and a promoter of neural cell damage in the presence of mutant SOD1. Furthermore, the metabolic alterations we report may help explain why mitochondrial dysfunction and impairment of the endoplasmic reticulum stress response are frequently seen in ALS.

Journal ArticleDOI
TL;DR: In this article, the authors used biochemical and genetic approaches to define the inhibitory features of the CHOP uORF and the biological consequences of loss of the UORF on CHOP expression during stress.

Journal ArticleDOI
TL;DR: It is shown that the ISR, an innate protective pathway that maintains proteostasis, may be effectively harnessed to aid in the protection of oligodendrocytes and myelin during inflammation, and may offer an important component in halting the progression of multiple sclerosis.
Abstract: Summary Multiple sclerosis is a chronic demyelinating autoimmune disease of the CNS with no known cure. Although 12 immunomodulatory therapies exist, they have only modest effects on disease progression. The field has therefore focused on the development of alternative treatment strategies, such as enhancement of remyelination and CNS repair. Progress has been made on a third, complementary treatment approach that aims to protect oligodendrocytes—and the myelin they generate and maintain—from inflammation-mediated death by enhancing the integrated stress response. Studies in cells and in mouse models of multiple sclerosis have shown that this innate protective pathway, which maintains proteostasis, can be harnessed effectively to protect oligodendrocytes and myelin during inflammation. With one drug already in clinical development for patients with multiple sclerosis, and several potential therapies under investigation, modulation of the integrated stress response might become an important component of strategies to halt the progression of the disease.

Journal ArticleDOI
TL;DR: It is found that FGF21 played a negligible role in muscle mitochondrial stress-related improved obesity resistance, glycemic control and hepatic lipid homeostasis, and the protective cell-autonomous muscle mitohormesis and metabolic stress adaptation did not require the presence of FGF 21.
Abstract: Objective Fibroblast growth factor 21 (FGF21) was recently discovered as stress-induced myokine during mitochondrial disease and proposed as key metabolic mediator of the integrated stress response (ISR) presumably causing systemic metabolic improvements. Curiously, the precise cell-non-autonomous and cell-autonomous relevance of endogenous FGF21 action remained poorly understood. Methods We made use of the established UCP1 transgenic (TG) mouse, a model of metabolic perturbations made by a specific decrease in muscle mitochondrial efficiency through increased respiratory uncoupling and robust metabolic adaptation and muscle ISR-driven FGF21 induction. In a cross of TG with Fgf21 -knockout (FGF21 −/− ) mice, we determined the functional role of FGF21 as a muscle stress-induced myokine under low and high fat feeding conditions. Results Here we uncovered that FGF21 signaling is dispensable for metabolic improvements evoked by compromised mitochondrial function in skeletal muscle. Strikingly, genetic ablation of FGF21 fully counteracted the cell-non-autonomous metabolic remodeling and browning of subcutaneous white adipose tissue (WAT), together with the reduction of circulating triglycerides and cholesterol. Brown adipose tissue activity was similar in all groups. Remarkably, we found that FGF21 played a negligible role in muscle mitochondrial stress-related improved obesity resistance, glycemic control and hepatic lipid homeostasis. Furthermore, the protective cell-autonomous muscle mitohormesis and metabolic stress adaptation, including an increased muscle proteostasis via mitochondrial unfolded protein response (UPR mt ) and amino acid biosynthetic pathways did not require the presence of FGF21. Conclusions Here we demonstrate that although FGF21 drives WAT remodeling, the adaptive pseudo-starvation response under elevated muscle mitochondrial stress conditions operates independently of both WAT browning and FGF21 action. Thus, our findings challenge FGF21 as key metabolic mediator of the mitochondrial stress adaptation and powerful therapeutic target during muscle mitochondrial disease.

Journal ArticleDOI
TL;DR: It is suggested that the upregulation of SESN2 by mitochondrial dysfunction provides a homeostatic feedback that attenuates biosynthetic processes during temporal losses of energy supply from mitochondria thereby assisting better adaptation and viability of cells in hostile environments.
Abstract: We found that inhibitors of mitochondrial respiratory chain complexes III (myxothiazol) and I (piericidin A) in some epithelial carcinoma cell lines induce transcription of the p53-responsive SESN2 gene that plays an important role in stress response and homeostatic regulation. However, the effect did not depend on p53 because i) there was no induction of p53 after the treatment with piericidin A; ii) after the treatment with myxothiazol the peak of SESN2 gene upregulation occurred as early as 5h, before the onset of p53 activation (13h); iii) a supplementation with uridine that abolishes the p53 activation in response to myxothiazol did not abrogate the induction of SESN2 transcripts; iv) in the p53 negative HCT116 p53 -/- cells SESN2 transcription could be also induced by myxothiazol. In response to the respiratory chain inhibitors we observed an induction of ATF4, the key transcription factor of the integrated stress response (ISR). We found that the induction of SESN2 transcripts could be prevented by the ISR inhibitory small molecule ISRIB. Also, by inhibiting or overexpressing ATF4 with specific shRNA or ATF4-expressing constructs, respectively, we have confirmed the role of ATF4 in the SESN2 gene upregulation induced by mitochondrial dysfunction. At a distance of 228 bp upstream from the SESN2 transcription start site we found a candidate sequence for the ATF4 binding site and confirmed its requirement for the induction of SESN2 in luciferase reporter experiments. We suggest that the upregulation of SESN2 by mitochondrial dysfunction provides a homeostatic feedback that attenuates biosynthetic processes during temporal losses of energy supply from mitochondria thereby assisting better adaptation and viability of cells in hostile environments.

Journal ArticleDOI
TL;DR: It is demonstrated that the modulation of eIF2α-specific phosphatase cofactor activity can be a rheostat of cellular homeostasis that initiates a functional ISR and suggest that the HIV-PIs could be repositioned as therapeutics in human diseases to modulate translation rates and stress responses.
Abstract: Inhibitors of the HIV aspartyl protease [HIV protease inhibitors (HIV-PIs)] are the cornerstone of treatment for HIV. Beyond their well-defined antiretroviral activity, these drugs have additional effects that modulate cell viability and homeostasis. However, little is known about the virus-independent pathways engaged by these molecules. Here we show that the HIV-PI Nelfinavir decreases translation rates and promotes a transcriptional program characteristic of the integrated stress response (ISR). Mice treated with Nelfinavir display hallmarks of this stress response in the liver, including α subunit of translation initiation factor 2 (eIF2α) phosphorylation, activating transcription factor-4 (ATF4) induction, and increased expression of known downstream targets. Mechanistically, Nelfinavir-mediated ISR bypassed direct activation of the eIF2α stress kinases and instead relied on the inhibition of the constitutive eIF2α dephosphorylation and down-regulation of the phophatase cofactor CReP (Constitutive Repressor of eIF2α Phosphorylation; also known as PPP1R15B). These findings demonstrate that the modulation of eIF2α-specific phosphatase cofactor activity can be a rheostat of cellular homeostasis that initiates a functional ISR and suggest that the HIV-PIs could be repositioned as therapeutics in human diseases to modulate translation rates and stress responses.

Journal ArticleDOI
TL;DR: In this article, the eukaryotic translation initiation factor 2α (eIF2α) phosphorylation-dependent integrated stress response (ISR), a component of the unfolded protein response, has long been known to regulate intermediary metabolism, but the details are poorly worked out.
Abstract: The eukaryotic translation initiation factor 2α (eIF2α) phosphorylation-dependent integrated stress response (ISR), a component of the unfolded protein response, has long been known to regulate intermediary metabolism, but the details are poorly worked out. We report that profiling of mRNAs of transgenic mice harboring a ligand-activated skeletal muscle-specific derivative of the eIF2α protein kinase R-like ER kinase revealed the expected up-regulation of genes involved in amino acid biosynthesis and transport but also uncovered the induced expression and secretion of a myokine, fibroblast growth factor 21 (FGF21), that stimulates energy consumption and prevents obesity. The link between the ISR and FGF21 expression was further reinforced by the identification of a small-molecule ISR activator that promoted Fgf21 expression in cell-based screens and by implication of the ISR-inducible activating transcription factor 4 in the process. Our findings establish that eIF2α phosphorylation regulates not only cell-autonomous proteostasis and amino acid metabolism, but also affects non-cell-autonomous metabolic regulation by induced expression of a potent myokine.

Journal ArticleDOI
TL;DR: The data suggest that SG assembly occurs in glioma cells in response to chemotherapeutic drugs in an eIF2α-dependent manner and this response is relevant for drug resistance.
Abstract: Malignant gliomas are a lethal type of brain tumors that poorly respond to chemotherapeutic drugs. Several therapy resistance mechanisms have been characterized. However, the response to stress through mRNA translational control has not been evaluated for this type of tumor. A potential target would involve the alpha subunit of eukaryotic translation initiation factor (eIF2α) that leads to assembly of stress granules (SG) which are cytoplasmic granules mainly composed by RNA binding proteins and untranslated mRNAs. We assessed whether glioma cells are capable of assembling SG after exposure to different classes of chemotherapeutic agents through evaluation of the effects of interfering in this process by impairing the eIF2α signaling. C6 and U87MG cells were exposed to bortezomib, cisplatin, or etoposide. Forced expression of a dominant negative mutant of eIF2α (eIF2α(DN)) was employed to block this pathway. We observed that exposure to drugs stimulated SG assembly. This was reduced in eIF2α(DN)-transfected cells and this strategy enhanced chemotherapeutically-induced cell death for all drugs. Our data suggest that SG assembly occurs in glioma cells in response to chemotherapeutic drugs in an eIF2α-dependent manner and this response is relevant for drug resistance. Interfering with eIF2α signaling pathway may be a potential strategy for new co-adjuvant therapies to treat gliomas.

18 Mar 2016
TL;DR: In this paper, the authors used biochemical and genetic approaches to define the inhibitory features of the CHOP uORF and the biological consequences of loss of the UORF on CHOP expression during stress.
Abstract: Upon exposure to environmental stress, phosphorylation of the α subunit of eIF2 (eIF2α-P) represses global protein synthesis, coincident with preferential translation of gene transcripts that mitigate stress damage or alternatively trigger apoptosis. Because there are multiple mammalian eIF2 kinases, each responding to different stress arrangements, this translational control scheme is referred to as the integrated stress response (ISR). Included among the preferentially translated mRNAs induced by eIF2α-P is that encoding the transcription factor CHOP (DDIT3/GADD153). Enhanced levels of CHOP promote cell death when ISR signaling is insufficient to restore cell homeostasis. Preferential translation of CHOP mRNA occurs by a mechanism involving ribosome bypass of an inhibitory upstream ORF (uORF) situated in the 5′-leader of the CHOP mRNA. In this study, we used biochemical and genetic approaches to define the inhibitory features of the CHOP uORF and the biological consequences of loss of the CHOP uORF on CHOP expression during stress. We discovered that specific sequences within the CHOP uORF serve to stall elongating ribosomes and prevent ribosome reinitiation at the downstream CHOP coding sequence. As a consequence, deletion of the CHOP uORF substantially increases the levels and modifies the pattern of induction of CHOP expression in the ISR. Enhanced CHOP expression leads to increased expression of key CHOP target genes, culminating in increased cell death in response to stress.

Journal ArticleDOI
TL;DR: It is suggested that cytoplasmic ezrin, previously considered a dormant and inactive protein, has important functions in regulating gene expression that may result in down-regulation of stress response genes.

Journal ArticleDOI
TL;DR: It is hypothesized that the essential role of methionine-charged initiator tRNA in forming ternary complex is responsible for the robust ability of Methionine deficiency to induce ATF4 and the ISR even in the absence of GCN2 or eIF2α kinase activity.
Abstract: Amino-acid deprivation is sensed by the eIF2α kinase GCN2. Under conditions of essential amino-acid limitation, GCN2 phosphorylates eIF2α, inhibiting the formation of a new ternary complex and hence mRNA translation initiation. While decreasing global mRNA translation, eIF2α phosphorylation also increases the translation of the integrated stress response (ISR) transcription factor ATF4, which increases the expression of many stress response genes that contain a C/EBP-ATF response element (CARE), including Atf4, 4Ebp1, Asns, and Chop. Using wild-type as well as Gcn2 knockout and unphosphorylatable eIF2α mutant MEFs, we characterized a novel GCN2/eIF2α phosphorylation-independent, but ATF4-dependent, pathway that upregulates the expression of CARE-containing genes in MEFs lacking GCN2 or phosphorylatable eIF2α when these cells are exposed to methionine-deficient, and to a lesser extent arginine- or histidine-deficient, medium. Thus, we demonstrate a GCN2/eIF2α phosphorylation-independent pathway that converges with the GCN2/eIF2α kinase-dependent pathway at the level of ATF4 and similarly results in the upregulation of CARE-containing genes. We hypothesize that the essential role of methionine-charged initiator tRNA in forming ternary complex is responsible for the robust ability of methionine deficiency to induce ATF4 and the ISR even in the absence of GCN2 or eIF2α kinase activity.

Journal ArticleDOI
TL;DR: It is shown that disruption of F-actin in mammalian cells inhibits translation in a GCN2-dependent manner, correlating with increased levels of uncharged tRNA and the findings indicate thatGCN2 is an important sensor of the state of the actin cytoskeleton.
Abstract: Genetic and pharmacological interventions in yeast and mammalian cells have suggested a cross-talk between the actin cytoskeleton and protein synthesis. Regulation of the activity of the translation initiation factor 2 (eIF2) is a paramount mechanism for cells to rapidly adjust the rate of protein synthesis and to trigger reprogramming of gene expression in response to internal and external cues. Here, we show that disruption of F-actin in mammalian cells inhibits translation in a GCN2-dependent manner, correlating with increased levels of uncharged tRNA. GCN2 activation increased phosphorylation of its substrate eIF2α and the induction of the integrated stress response master regulator, ATF4. GCN2 activation by latrunculin-B is dependent on GCN1 and inhibited by IMPACT. Our data suggest that GCN2 occurs in two different complexes, GCN2-eEF1A and GCN2-GCN1. Depolymerization of F-actin shifts GCN2 to favor the complex with GCN1, concomitant with GCN1 being released from its binding to IMPACT, which is sequestered by G-actin. These events might further contribute to GCN2 activation. Our findings indicate that GCN2 is an important sensor of the state of the actin cytoskeleton.

Journal ArticleDOI
03 Nov 2016-PLOS ONE
TL;DR: These findings support an additional layer of complexity in the development of VWM, beyond a hyperactive ISR, as both translation rates and survival from stressors that normally activate the ISR were not reproducibly affected by the VWM mutations.
Abstract: The eukaryotic translation initiation factor eIF2B promotes mRNA translation as a guanine nucleotide exchange factor (GEF) for translation initiation factor 2 (eIF2). Endoplasmic reticulum (ER) stress-mediated activation of the kinase PERK and the resultant phosphorylation of eIF2's alpha subunit (eIF2α) attenuates eIF2B GEF activity thereby inducing an integrated stress response (ISR) that defends against protein misfolding in the ER. Mutations in all five subunits of human eIF2B cause an inherited leukoencephalopathy with vanishing white matter (VWM), but the role of the ISR in its pathogenesis remains unclear. Using CRISPR-Cas9 genome editing we introduced the most severe known VWM mutation, EIF2B4A391D, into CHO cells. Compared to isogenic wildtype cells, GEF activity of cells with the VWM mutation was impaired and the mutant cells experienced modest enhancement of the ISR. However, despite their enhanced ISR, imposed by the intrinsic defect in eIF2B, disrupting the inhibitory effect of phosphorylated eIF2α on GEF by a contravening EIF2S1/eIF2αS51A mutation that functions upstream of eIF2B, selectively enfeebled both EIF2B4A391D and the related severe VWM EIF2B4R483W cells. The basis for paradoxical dependence of cells with the VWM mutations on an intact eIF2α genotype remains unclear, as both translation rates and survival from stressors that normally activate the ISR were not reproducibly affected by the VWM mutations. Nonetheless, our findings support an additional layer of complexity in the development of VWM, beyond a hyperactive ISR.

Journal ArticleDOI
TL;DR: It is suggested that functional gene expression diversity may arise during stress by the coordination of alternative splicing and alternative translation, and that this diversity might contribute to the cellular response to stress.
Abstract: The intestinal epithelium plays a critical role in nutrient absorption and innate immune defense. Recent studies showed that metabolic stress pathways, in particular the integrated stress response (ISR), control intestinal epithelial cell fate and function. Here, we used RNA-seq to analyze the global transcript level and alternative splicing responses of primary murine enteroids undergoing two distinct ISR-triggering stresses, endoplasmic reticulum (ER) stress and nutrient starvation. Our results reveal the core transcript level response to ISR-associated stress in murine enteroids, which includes induction of stress transcription factors, as well as genes associated with chemotaxis and inflammation. We also identified the transcript expression signatures that are unique to each ISR stress. Among these, we observed that ER stress and nutrient starvation had opposite effects on intestinal stem cell (ISC) transcriptional reprogramming. In agreement, ER stress decreased EdU incorporation, a marker of cell proliferation, in primary murine enteroids, while nutrient starvation had an opposite effect. We also analyzed the impact of these cellular stresses on mRNA splicing regulation. Splicing events commonly regulated by both stresses affected genes regulating splicing and were associated with nonsense-mediated decay (NMD), suggesting that splicing is modulated by an auto-regulatory feedback loop during stress. In addition, we also identified a number of genes displaying stress-specific splicing regulation. We suggest that functional gene expression diversity may arise during stress by the coordination of alternative splicing and alternative translation, and that this diversity might contribute to the cellular response to stress. Together, these results provide novel understanding of the importance of metabolic stress pathways in the intestinal epithelium. Specifically, the importance of cellular stresses in the regulation of immune and defense function, metabolism, proliferation and ISC activity in the intestinal epithelium is highlighted. Furthermore, this work highlights an under-appreciated role played by alternative splicing in shaping the response to stress and reveals a potential mechanism for gene regulation involving coupling of AS and alternative translation start sites.

Journal ArticleDOI
TL;DR: This study provides the first detailed insight into the cellular effects modulated by 4- HPR in DENV-infected cells, critical to progressing 4-HPR towards the clinic.

Journal ArticleDOI
15 Sep 2016-Gene
TL;DR: A functional mechanism by which ADM2 participates in the unfolded protein response (UPR) and in responses to the mitochondrial respiration chain inhibition is revealed, which is controlled by activating transcription factor 4 (ATF4), the principal regulator of the integrated stress response (ISR).

Journal ArticleDOI
TL;DR: The dual role of the ISR, promoting and inhibiting, in medulloblastoma tumorigenesis is implied by regulating apoptosis of pre-malignant GCPs during the course of malignant transformation.
Abstract: // Sarrabeth Stone 1, 2, 3, * , Yeung Ho 1, 2, 3, * , Xiting Li 1, 2, 3, 4 , Stephanie Jamison 1, 2, 3 , Heather P. Harding 5 , David Ron 5 , Wensheng Lin 1, 2, 3 1 Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota, United States 2 Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota, United States 3 Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, United States 4 Department of Periodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China 5 Cambridge Institute of Medical Research, University of Cambridge, Cambridge, United Kingdom * These authors contributed equally to this work Correspondence to: Wensheng Lin, email: linw@umn.edu Keywords: medulloblastoma, integrated stress response, ER stress, GADD34, tumorigenesis Received: May 27, 2016 Accepted: September 01, 2016 Published: September 06, 2016 ABSTRACT In response to endoplasmic reticulum (ER) stress, activation of pancreatic ER kinase (PERK) coordinates an adaptive program known as the integrated stress response (ISR) by phosphorylating translation initiation factor 2α (eIF2α). Phosphorylated eIF2α is quickly dephosphorylated by the protein phosphatase 1 and growth arrest and DNA damage 34 (GADD34) complex. Data indicate that the ISR can either promote or suppress tumor development. Our previous studies showed that the ISR is activated in medulloblastoma in both human patients and animal models, and that the decreased ISR via PERK heterozygous deficiency attenuates medulloblastoma formation in Patched1 heterozygous deficient ( Ptch1 +/−) mice by enhancing apoptosis of pre-malignant granule cell precursors (GCPs) during cell transformation. We showed here that GADD34 heterozygous mutation moderately enhanced the ISR and noticeably increased the incidence of medulloblastoma in adult Ptch1 +/− mice. Surprisingly, GADD34 homozygous mutation strongly enhanced the ISR, but significantly decreased the incidence of medulloblastoma in adult Ptch1 +/− mice. Intriguingly, GADD34 homozygous mutation significantly enhanced pre-malignant GCP apoptosis in cerebellar hyperplastic lesions and reduced the lesion numbers in young Ptch1 +/− mice. Nevertheless, neither GADD34 heterozygous mutation nor GADD34 homozygous mutation had a significant effect on medulloblastoma cells in adult Ptch1 +/− mice. Collectively, these data imply the dual role of the ISR, promoting and inhibiting, in medulloblastoma tumorigenesis by regulating apoptosis of pre-malignant GCPs during the course of malignant transformation.