scispace - formally typeset
Search or ask a question

Showing papers on "Organic semiconductor published in 2013"


Journal ArticleDOI
TL;DR: Reducing dopant volume is found to be as important as optimizing carrier concentration when maximizing ZT in OSCs, and this stands in sharp contrast to ISCs, for which these parameters have trade-offs.
Abstract: The conversion efficiency of heat to electricity in thermoelectric materials depends on both their thermopower and electrical conductivity. It is now reported that, unlike their inorganic counterparts, organic thermoelectric materials show an improvement in both these parameters when the volume of dopant elements is minimized; furthermore, a high conversion efficiency is achieved in PEDOT:PSS blends.

1,366 citations


Journal ArticleDOI
TL;DR: An approach--termed fluid-enhanced crystal engineering (FLUENCE)--that allows for a high degree of morphological control of solution-printed thin films and may find use in the fabrication of high-performance, large-area printed electronics.
Abstract: Solution coating of organic semiconductors offers great potential for achieving low-cost manufacturing of large-area and flexible electronics. However, the rapid coating speed needed for industrial-scale production poses challenges to the control of thin-film morphology. Here, we report an approach—termed fluid-enhanced crystal engineering (FLUENCE)—that allows for a high degree of morphological control of solution-printed thin films. We designed a micropillar-patterned printing blade to induce recirculation in the ink for enhancing crystal growth, and engineered the curvature of the ink meniscus to control crystal nucleation. Using FLUENCE, we demonstrate the fast coating and patterning of millimetre-wide, centimetre-long, highly aligned single-crystalline organic semiconductor thin films. In particular, we fabricated thin films of 6,13-bis(triisopropylsilylethynyl) pentacene having non-equilibrium single-crystalline domains and an unprecedented average and maximum mobilities of 8.1±1.2 cm2 V−1 s−1 and 11 cm2 V−1 s−1. FLUENCE of organic semiconductors with non-equilibrium single-crystalline domains may find use in the fabrication of high-performance, large-area printed electronics. Solution printing of organic semiconductors could in principle be scaled to industrial needs, yet attaining aligned single-crystals directly with this method has been challenging. By using a micropillar-patterned printing blade designed to enhance the control of crystal nucleation and growth, thin films of macroscopic, highly aligned single crystals of organic semiconductors can now be fabricated.

876 citations


Journal ArticleDOI
TL;DR: In this paper, a review of conjugated polymers with 1D and 2D topological structures is presented, and a design approach for the alternating donor-acceptor (D-A) copolymers is proposed.

668 citations


Journal ArticleDOI
TL;DR: An organic field effect transistor featuring the chiral molecule helicene acts as a photodetector that is able to distinguish between left and right-handed circularly polarized light.
Abstract: An organic field effect transistor featuring the chiral molecule helicene acts as a photodetector that is able to distinguish between left- and right-handed circularly polarized light.

642 citations


Journal ArticleDOI
TL;DR: This review focuses on the advances in performance and molecular design of n-type and ambipolar semiconductors reported in the past few years.
Abstract: The advantages of organic field-effect transistors, such as low cost, mechanical flexibility and large-area fabrication, make them potentially useful for electronic applications such as flexible switching backplanes for video displays, radio frequency identifications and so on. A large amount of molecules were designed and synthesized for electron transporting (n-type) and ambipolar organic semiconductors with improved performance and stability. In this review, we focus on the advances in performance and molecular design of n-type and ambipolar semiconductors reported in the past few years.

604 citations


Journal ArticleDOI
TL;DR: In this paper, the electron-accepting diketopyrrolopyrrole (DPP) moiety has been receiving considerable attention for constructing donor-acceptor (D-A) type organic semiconductors for a variety of applications, particularly for organic thin film transistors (OTFTs) and organic photovoltaics (OPVs).
Abstract: In recent years, the electron-accepting diketopyrrolopyrrole (DPP) moiety has been receiving considerable attention for constructing donor–acceptor (D–A) type organic semiconductors for a variety of applications, particularly for organic thin film transistors (OTFTs) and organic photovoltaics (OPVs). Through association of the DPP unit with appropriate electron donating building blocks, the resulting D–A molecules interact strongly in the solid state through intermolecular D–A and π–π interactions, leading to highly ordered structures at the molecular and microscopic levels. The closely packed molecules and crystalline domains are beneficial for intermolecular and interdomain (or intergranular) charge transport. Furthermore, the energy levels can be readily adjusted, affording p-type, n-type, or ambipolar organic semiconductors with highly efficient charge transport properties in OTFTs. In the past few years, a number of DPP-based small molecular and polymeric semiconductors have been reported to show mobility close to or greater than 1 cm2 V−1 s−1. DPP-based polymer semiconductors have achieved record high mobility values for p-type (hole mobility: 10.5 cm2 V−1 s−1), n-type (electron mobility: 3 cm2 V−1 s−1), and ambipolar (hole/electron mobilities: 1.18/1.86 cm2 V−1 s−1) OTFTs among the known polymer semiconductors. Many DPP-based organic semiconductors have favourable energy levels and band gaps along with high hole mobility, which enable them as promising donor materials for OPVs. Power conversion efficiencies (PCE) of up to 6.05% were achieved for OPVs using DPP-based polymers, demonstrating their potential usefulness for the organic solar cell technology. This article provides an overview of the recent exciting progress made in DPP-containing polymers and small molecules that have shown high charge carrier mobility, around 0.1 cm2 V−1 s−1 or greater. It focuses on the structural design, optoelectronic properties, molecular organization, morphology, as well as performances in OTFTs and OPVs of these high mobility DPP-based materials.

557 citations


Journal ArticleDOI
TL;DR: The doping mechanism consumes Li(+) during the device operation, which poses a problem, since the lithium salt is required at the dye-sensitized heterojunction to enhance charge generation, and highlights that new additives are required to maximize the performance and the long-term stability of ss-DSSCs.
Abstract: Lithium salts have been shown to dramatically increase the conductivity in a broad range of polymeric and small molecule organic semiconductors (OSs). Here we demonstrate and identify the mechanism by which Li+ p-dopes OSs in the presence of oxygen. After we established the lithium doping mechanism, we re-evaluate the role of lithium bis(trifluoromethylsulfonyl)-imide (Li-TFSI) in 2,2′,7,7′-tetrakis(N,N-di-p-methoxyphenyl-amine)9,9′-Spirobifluorene (Spiro-OMeTAD) based solid-state dye-sensitized solar cells (ss-DSSCs). The doping mechanism consumes Li+ during the device operation, which poses a problem, since the lithium salt is required at the dye-sensitized heterojunction to enhance charge generation. This compromise highlights that new additives are required to maximize the performance and the long-term stability of ss-DSSCs.

536 citations


Journal ArticleDOI
22 Aug 2013-Nature
TL;DR: It is shown that the formation of triplet excitons can be the main loss mechanism in organic photovoltaic cells, and that, even when energetically favoured, the relaxation of 3CT states to T1 states can be strongly suppressed by wavefunction delocalization, allowing for the dissociation of 3 CT states back to free charges, thereby reducing recombination and enhancing device performance.
Abstract: In biological complexes, cascade structures promote the spatial separation of photogenerated electrons and holes, preventing their recombination. In contrast, the photogenerated excitons in organic photovoltaic cells are dissociated at a single donor-acceptor heterojunction formed within a de-mixed blend of the donor and acceptor semiconductors. The nanoscale morphology and high charge densities give a high rate of electron-hole encounters, which should in principle result in the formation of spin-triplet excitons, as in organic light-emitting diodes. Although organic photovoltaic cells would have poor quantum efficiencies if every encounter led to recombination, state-of-the-art examples nevertheless demonstrate near-unity quantum efficiency. Here we show that this suppression of recombination arises through the interplay between spin, energetics and delocalization of electronic excitations in organic semiconductors. We use time-resolved spectroscopy to study a series of model high-efficiency polymer-fullerene systems in which the lowest-energy molecular triplet exciton (T1) for the polymer is lower in energy than the intermolecular charge transfer state. We observe the formation of T1 states following bimolecular recombination, indicating that encounters of spin-uncorrelated electrons and holes generate charge transfer states with both spin-singlet ((1)CT) and spin-triplet ((3)CT) characters. We show that the formation of triplet excitons can be the main loss mechanism in organic photovoltaic cells. But we also find that, even when energetically favoured, the relaxation of (3)CT states to T1 states can be strongly suppressed by wavefunction delocalization, allowing for the dissociation of (3)CT states back to free charges, thereby reducing recombination and enhancing device performance. Our results point towards new design rules both for photoconversion systems, enabling the suppression of electron-hole recombination, and for organic light-emitting diodes, avoiding the formation of triplet excitons and enhancing fluorescence efficiency.

454 citations


Journal ArticleDOI
TL;DR: Results demonstrate that variation of the alkyl chain branching point is a powerful strategy for tuning of molecular packing to enable high charge transport mobilities.
Abstract: Substituted side chains are fundamental units in solution processable organic semiconductors in order to achieve a balance of close intermolecular stacking, high crystallinity, and good compatibility with different wet techniques. Based on four air-stable solution-processed naphthalene diimides fused with 2-(1,3-dithiol-2-ylidene)malononitrile groups (NDI-DTYM2) that bear branched alkyl chains with varied side-chain length and different branching position, we have carried out systematic studies on the relationship between film microstructure and charge transport in their organic thin-film transistors (OTFTs). In particular synchrotron measurements (grazing incidence X-ray diffraction and near-edge X-ray absorption fine structure) are combined with device optimization studies to probe the interplay between molecular structure, molecular packing, and OTFT mobility. It is found that the side-chain length has a moderate influence on thin-film microstructure but leads to only limited changes in OTFT performanc...

370 citations


Journal ArticleDOI
TL;DR: By simply doping the conventional light-emitting polymer F8BT with a helically chiral aromatic molecule, it is shown that substantial levels of CP-electroluminescence can be generated directly.
Abstract: Organic light-emitting diodes (OLEDs) are devices that utilize an emissive electroluminescent organic semiconductor (OSC) thin film sandwiched between two electrodes. Employing polymers as the OSC is a highly attractive approach due to their easy solution processibility. This results in low cost, large area device fabrication possibilities using printing techniques. Circularly polarized (CP) light is central to a large range of current and future display and photonic technologies, including highly efficient LCD backlights,1 optical quantum information processing and communication,2, 3 and optical spintronics.4 There is therefore high interest in constructing CP-light-emitting devices. Whilst the use of wide-band reflective polarizers as passive components in polymer LED (PLED) devices is one means to engineer a CP light output, this results in a relatively complex and thick device architecture, requiring an additional liquid-crystal cell.5 The direct generation of CP light from a conventional PLED would be far more favorable in terms of simplicity, compactness, energy efficiency and product cost, and thus there has been significant interest in their development.

335 citations


Journal ArticleDOI
TL;DR: Greiner et al. as mentioned in this paper provided a rational guide to process engineers in selecting the best suitable electrode/oxide structures for a targeted applications, which can be used as a buffer layer to modify the electrode work function.
Abstract: Thin-film metal oxides are among the key materials used in organic semiconductor devices. As there are no intrinsic charge carriers in a typical organic semiconductor, all charges in the device must be injected from electrode/organic interfaces, whose energetic structure consequentially dictates the performance of devices. The energy barrier at the interface depends critically on the work function of the electrode. For this reason, various types of thin-film metal oxides can be used as a buffer layer to modify the electrode work function. This paper provides a review on recent progress in metal oxide/organic interface energetics, oxide valence structure and work function, as well as the impact of defects and interfacial reactions on oxide work functions. This review provides a rational guide to process engineers in selecting the best suitable electrode/oxide structures for a targeted applications. Organic semiconductors offer an attractive alternative to the traditional, silicon-based components of electronic devices. Cheaper to produce and more sustainable, they can also introduce different attributes, such as flexibility, to these devices. However, as organic materials do not typically possess intrinsic charge carriers — electrons or holes — all charges in the device must originate from the electrode and pass through the electrode-organic material interface, a process hindered by an energy barrier. Mark Greiner and Zheng-Hong Lu review recent achievements in a versatile class of buffer layer — thin films of transition metal oxides — that can be positioned between the two materials to reduce the energy barrier that limits charge injection. The researchers discuss how to select the most suitable metal oxide for a specific purpose, and then tune the thin film's properties by adjusting the thickness of the metal oxide layer, the oxidation state of its cations and the concentration of its defects. Over the last decade, metal oxides have proven to be important materials for organic electronics. Oxides are often used as charge-injection and charge-selective interlayers to engineer the electrical resistance at electrode/organic interfaces in organic devices. An oxide’s behavior as an interlayer depends strongly on the oxide’s electronic properties—such as its band structure and work function. The numerous degrees of freedom in an oxide’s electronic properties allow these characteristics to be easily modified. The present review outlines the use of metal oxides in organic electronics, and discusses the factors that affect the oxide’s properties that are relevant to oxide/organic interfaces.

Journal ArticleDOI
TL;DR: This Account reviews key experimental findings from TR-2PPE experiments and presents a theoretical analysis of the quantum coherent mechanism based on electronic structural and density matrix calculations for crystalline tetracene lattices, which reveals the critical roles of the charge transfer states and the high dephasing rates in ensuring the ultrafast formation of multiexciton states.
Abstract: The absorption of one photon by a semiconductor material usually creates one electron–hole pair. However, this general rule breaks down in a few organic semiconductors, such as pentacene and tetracene, where one photon absorption may result in two electron–hole pairs. This process, where a singlet exciton transforms to two triplet excitons, can have quantum yields as high as 200%. Singlet fission may be useful to solar cell technologies to increase the power conversion efficiency beyond the so-called Shockley-Queisser limit. Through time-resolved two-photon photoemission (TR-2PPE) spectroscopy in crystalline pentacene and tetracene, our lab has recently provided the first spectroscopic signatures in singlet fission of a critical intermediate known as the multiexciton state (also called a correlated triplet pair). More importantly, we found that population of the multiexciton state rises at the same time as the singlet state on the ultrafast time scale upon photoexcitation. This observation does not fit wi...


Journal ArticleDOI
TL;DR: High performance organic field-effect transistor (OFET)-based ammonia sensors are demonstrated with ultrathin (4-6 molecular layers) dendritic microstripes of an organic semiconductor prepared via dip-coating, demonstrating high sensitivity, fast response/recovery rate, good selectivity, low concentration detection ability, and reliable reversibility, as well as stability.
Abstract: High performance organic field-effect transistor (OFET)-based ammonia sensors are demonstrated with ultrathin (4-6 molecular layers) dendritic microstripes of an organic semiconductor prepared via dip-coating These sensors exhibit high sensitivity, fast response/recovery rate, good selectivity, low concentration detection ability, and reliable reversibility, as well as stability Such a performance represents great progress in the field of OFET-based sensors

Journal ArticleDOI
TL;DR: In this article, the chemical and structural properties of solution-processed thin films of P3HT blended with p-type dopant F4TCNQ were investigated, and the maximum in-plane electrical conductivity of doped films was observed at a molar doping fraction of 0.17.

Journal ArticleDOI
TL;DR: This article aims to highlight recent work on application of nature-inspired H-bonded organic molecules in organic electronic devices and exploitation of H- bonding for supramolecular assembly of organic conductors.
Abstract: Hydrogen-bonding (H-bonding) is a relatively strong, highly directional, and specific noncovalent interaction present in many organic molecules, and notably is responsible for supramolecular ordering in biological systems. The H-bonding interactions play a role in many organic electrically conducting materials – in particular in those related to biology, e.g. melanin and indigo. This article aims to highlight recent work on application of nature-inspired H-bonded organic molecules in organic electronic devices. Three topics are covered in this brief review: (1) electrical and ionic conduction in natural H-bonded systems, (2) semiconducting properties of H-bonded organic pigments, and (3) exploitation of H-bonding for supramolecular assembly of organic conductors. H-bonding interactions are ubiquitous in biology, thus making the study of H-bonded organic semiconductors highly pertinent where interfacing of electronics with biological systems is desired.

Journal ArticleDOI
TL;DR: In this article, the authors demonstrate control of donor-acceptor heterojunctions through microphase-separated conjugated block copolymers, which demonstrate efficient photoconversion well beyond devices composed of homopolymer blends.
Abstract: Organic electronic materials have the potential to impact almost every aspect of modern life including how we access information, light our homes, and power personal electronics. Nevertheless, weak intermolecular interactions and disorder at junctions of different organic materials limit the performance and stability of organic interfaces and hence the applicability of organic semiconductors to electronic devices. Here, we demonstrate control of donor–acceptor heterojunctions through microphase-separated conjugated block copolymers. When utilized as the active layer of photovoltaic cells, block copolymer-based devices demonstrate efficient photoconversion well beyond devices composed of homopolymer blends. The 3% block copolymer device efficiencies are achieved without the use of a fullerene acceptor. X-ray scattering results reveal that the remarkable performance of block copolymer solar cells is due to self-assembly into mesoscale lamellar morphologies with primarily face-on crystallite orientations. Co...

Journal ArticleDOI
TL;DR: Two novel BN-substituted tetrathienonaphthalene derivatives are synthesized through an efficient one-pot electrophilic borylation method to extend the p conjugated plane for intermolecular p–p stacking and charge-carrier interactions.
Abstract: Organic semiconductors have attracted great attention during the past few decades for the development of next-generation electronics. The incorporation of a B N unit, which is isoelectronic to the C=C moiety, into p systems provides a novel approach in the molecular engineering of organic semiconductors. BN substitution can change the electronic properties of p systems, and afford additional intermolecular dipole–dipole interactions. Therefore, BN-incorporated semiconductors provide new opportunities for organic electronics. Although significant progress has been made in azaborine chemistry, the construction of azaborine rings in large p scaffolds remains challenging. Moreover, azaborine compounds are usually susceptible to moisture and oxygen, and their thermal decomposition temperatures are around 200 8C, thus limiting their promising applications as organic materials. As a result, the charge-transport properties of azaborine compounds have rarely been investigated up to now. Only recently, Nakamura and co-workers reported a BN-fused polycyclic aromatic compound which exhibited higher intrinsic hole mobility than its carbon analog by timeresolved microwave conductivity measurements, implying that BN-substituted aromatics might outperform their carbon analogs in organic electronics. Nonetheless, electronic devices based on azaborine compounds have not yet been demonstrated. Herein, we synthesize two novel BN-substituted tetrathienonaphthalene derivatives BN-TTN-C3 and BN-TTN-C6 through an efficient one-pot electrophilic borylation method (Scheme 1). Four thiophene rings are fused onto a BNsubstituted naphthalene core to extend the p conjugated plane for intermolecular p–p stacking and charge-carrier

Journal ArticleDOI
TL;DR: Transient mobility spectroscopy is presented as a new tool to probe the charge carrier mobility of commonly employed organic and inorganic semiconductors over the relevant range of charge densities.
Abstract: Transient mobility spectroscopy (TMS) is presented as a new tool to probe the charge carrier mobility of commonly employed organic and inorganic semiconductors over the relevant range of charge densities The charge density dependence of the mobility of semiconductors used in hybrid and organic photovoltaics gives new insights into charge transport phenomena in solid state dye sensitized solar cells

Journal ArticleDOI
TL;DR: This work reports on precise thickness control of ultrathin films of several organic semiconductors by using a simple spin-coating approach and their potential in high-sensitivity gas sensing and other applications is demonstrated.
Abstract: Construction of ultrathin film organic transistors is an important challenge towards deeper understanding of the charge transport mechanism and multifunctional applications. We report on precise thickness control of ultrathin films of several organic semiconductors by using a simple spin-coating approach. Ultrathin film, n-channel organic transistors with mobilities well over 1.0 cm(2) V(-1) s(-1) have been realized and their potential in high-sensitivity gas sensing and other applications is demonstrated.

Journal ArticleDOI
TL;DR: Two inkjet pigments, epindolidione and quinacridone, that break this design rule are explored and afford intermolecular π-stacking reinforced by hydrogen-bonding bridges, and air-stable organic field effect transistors are reported.
Abstract: Extensive intramolecular π-conjugation is considered to be requisite in the design of organic semiconductors. Here, two inkjet pigments, epindolidione and quinacridone, that break this design rule are explored. These molecules afford intermolecular π-stacking reinforced by hydrogen-bonding bridges. Air-stable organic field effect transistors are reported that support mobilities up to 1.5 cm(2)/Vs with T80 lifetimes comparable with the most stable reported organic semiconducting materials.

Journal ArticleDOI
28 Nov 2013-Nature
TL;DR: T2 is more than two orders of magnitude greater than the duration of the spin manipulation pulses, which suggests that copper phthalocyanine holds promise for quantum information processing, and the long T1 indicates possibilities for medium-term storage of classical bits in all-organic devices on plastic substrates.
Abstract: Spintronics devices, which exploit the intrinsic spin of electrons as well as their charge, require precise control and read-out of electron spins. For organic semiconductors to find use in spintronic applications, it is desirable to identify molecules that possess long spin relaxation times. This paper establishes that copper phthalocyanine, a blue pigment commonly used in paints and dyes, appears to satisfy this requirement. It is inexpensive and can be easily processed into a thin-film form of the type used for device fabrication, making it a candidate material system for spin-based quantum information processing and other spintronic applications.

Journal ArticleDOI
TL;DR: By systematically varying the acceptor strength it was possible to discriminate the two models of molecular doping, suggesting strategies for the chemical design of more efficient molecular dopants.
Abstract: Molecular doping: The standard model for molecular p-doping of organic semiconductors (OSCs) assumes integer charge transfer between OSC and dopant. This is in contrast to an alternative model based on intermolecular complex formation instead. By systematically varying the acceptor strength it was possible to discriminate the two models. The latter is clearly favored, suggesting strategies for the chemical design of more efficient molecular dopants.

Journal ArticleDOI
TL;DR: Both a highly crystalline conjugated polymer layer and very smooth insulating polymer layer are formed by a consecutive wire-bar-coating process on a 4-inch plastic substrate with a short processing time for application as the active and dielectric layers of OFET arrays and ICs.
Abstract: Solution-processed organic semiconductors are of great potential for large-area, inexpensive, lightweight, and fl exible electronic applications. With respect to these materials, tremendous effort has recently been focused on developing several types of organic electronic and optoelectronic devices, such as organic light-emitting diodes (OLEDs), organic photovoltaics (OPVs), organic fi eld-effect transistors (OFETs), and organic memory and sensors, using graphic-art printing methods on fl substrates. [ 1‐5 ] OFETs are a fundamental building block of integrated circuits (ICs) and drivers for active-matrix fl at-panel displays. Accordingly, they are a promising candidate to replace the vacuum-processed amorphous inorganic ICs; this would enable the use of drivers in printed and fl exible radio-frequency identifi cation tags, memories, sensors, and display backplanes. [ 6 , 7 ] To realize high-speed organic printed ICs, the complementary IC geometry, which consists of p- and n-channel transistors, has an advantage over those that comprise unipolar transistors because of reduced transition delays, higher noise immunity, and negligible power consumption in the static state. [ 8 ] In solution-processed devices, p- and n-type active channels have been patterned at resolutions as low as a few micrometers using a variety of printing methods such as inkjet, spray, and gravure printing. [ 9 ] However, these printing processes typically result in device-to-device performance deviations because of diffi culties inherent in controlling the morphology (e.g., roughness and crystallinity) of micrometre-sized deposits. For example, organic semiconductor droplets that are deposited via ink jet onto non-absorbing substrates typically show signifi cant coffee

Journal ArticleDOI
TL;DR: V-shaped organic semiconductors have been designed and synthesized via a large-scale applicable synthetic route and have demonstrated high-performance transistor properties with maximum mobilities and pronounced thermal durability inherent in the V-shaped cores.
Abstract: V-shaped organic semiconductors have been designed and synthesized via a large-scale applicable synthetic route. Solution-crystallized films based on such molecules have demonstrated high-performance transistor properties with maximum mobilities of up to 9.5 cm(2) V(-1) s(-1) as well as pronounced thermal durability of up to 150 °C inherent in the V-shaped cores.

Journal ArticleDOI
TL;DR: A broad overview of the state of the art of the field of organic semiconductor single-crystal materials, devices, and theory can be found in this article, where the intrinsic structure-property relationship is examined, thus providing a test bed for charge and energy transport theories.
Abstract: Organic optoelectronics is an emerging field that exploits the unique properties of conjugated organic materials to develop new applications that require a combination of performance, low cost, light weight, and processability. For instance, disposable or wearable electronics, light-emitting diodes, smart tags, sensors, and solar cells all fall into this active area of research. Single crystals of conjugated organic molecules are, undoubtedly, the materials with the highest degree of order and purity among the variety of different forms of organic semiconductors. Electronic devices comprising these materials, such as single-crystal transistors and photoconductors developed during the last decade, are by far the best performers in terms of the fundamental parameters such as charge-carrier mobility, exciton diffusivity, concentration of defects, and operational stability. Extremely low density of defects and the resultant remarkable electrical characteristics of some of the organic single-crystal devices allow experimental access to the intrinsic charge transport properties not dominated by charge scattering and trapping. This enables basic studies of the physics of organic semiconductors, including examining the intrinsic structure-property relationship, thus providing a test bed for charge and energy transport theories. The goal of this issue of MRS Bulletin is to provide a broad overview of the state of the art of the field of organic semiconductor single-crystal materials, devices, and theory.

Journal ArticleDOI
TL;DR: In this paper, the photoelectronic characteristics of single-crystalline nanowire organic phototransistors (NW-OPTs) were studied using a high-performance n-channel organic semiconductor, N,N′-bis(2-phenylethyl)-perylene-3,4:9,10-tetracarboxylic diimide (BPE-PTCDI), as the photoactive layer.
Abstract: The photoelectronic characteristics of single-crystalline nanowire organic phototransistors (NW-OPTs) are studied using a high-performance n-channel organic semiconductor, N,N′-bis(2-phenylethyl)-perylene-3,4:9,10-tetracarboxylic diimide (BPE-PTCDI), as the photoactive layer. The optoelectronic performances of the NW-OPTs are analyzed by way of their current–voltage (I–V) characteristics on irradiation at different wavelengths, and comparison with corresponding thin-film organic phototransistors (OPTs). Significant enhancement in the charge-carrier mobility of NW-OPTs is observed upon light irradiation as compared with when performed in the dark. A mobility enhancement is observed when the incident optical power density increases and the wavelength of the light source matches the light-absorption range of the photoactive material. The photoswitching ratio is strongly dependent upon the incident optical power density, whereas the photoresponsivity is more dependent on matching the light-source wavelength with the maximum absorption range of the photoactive material. BPE-PTCDI NW-OPTs exhibit much higher external quantum efficiency (EQE) values (≈7900 times larger) than thin-film OPTs, with a maximum EQE of 263 000%. This is attributed to the intrinsically defect-free single-crystalline nature of the BPE-PTCDI NWs. In addition, an approach is devised to analyze the charge-transport behaviors using charge accumulation/release rates from deep traps under on/off switching of external light sources.

Journal ArticleDOI
TL;DR: In this article, the average electron-hole distance and the degree of charge-transfer character within low-energy optical excitations in solid-state pentacene have been quantified using first-principles calculations based on density functional theory and manybody perturbation theory.
Abstract: The nature of low energy optical excitations, or excitons, in organic solids is of central relevance to many optoelectronic applications, including solar energy conversion. Excitons in solid pentacene, a prototypical organic semiconductor, have been the subject of many experimental and theoretical studies, with differing conclusions as to the degree of their charge-transfer character. Using first-principles calculations based on density functional theory and many-body perturbation theory, we compute the average electron–hole distance and quantify the degree of charge-transfer character within optical excitations in solid-state pentacene. We show that several low-energy singlet excitations are characterized by a weak overlap between electron and hole and an average electron–hole distance greater than 6 A. Additionally, we show that the character of the lowest-lying singlet and triplet excitons is well-described with a simple analytic envelope function of the electron–hole distance.

Patent
25 Feb 2013
TL;DR: In this article, a method of preparing organic copolymers and organic semiconductor compositions and layers and uses thereof is presented. But this method is not suitable for the use of printed electronics and is particularly useful as a semiconducting material for use in formulations for organic thin film transistor (OTFT) backplanes for displays, integrated circuits, organic light emitting diodes (OLEDs), photodetectors, organic photovoltaic (OPV) cells, sensors, memory elements and logic circuits.
Abstract: The present invention relates to organic copolymers and organic semiconducting compositions comprising these materials, including layers and devices comprising such organic semiconductor compositions. The invention is also concerned with methods of preparing such organic semiconductor compositions and layers and uses thereof. The invention has application in the field of printed electronics and is particularly useful as a semiconducting material for use in formulations for organic thin film transistor (OTFT) backplanes for displays, integrated circuits, organic light emitting diodes (OLEDs), photodetectors, organic photovoltaic (OPV) cells, sensors, memory elements and logic circuits.

Journal ArticleDOI
TL;DR: In this paper, the authors demonstrate the use of PIL-doping in hybrid solar cells based on triarylamine hole transporting materials, such as 2,2′,7,7′-tetrakis(N,N-di-p-methoxyphenyl-amine)9,9′-spirobifluorene (spiro-OMeTAD).
Abstract: Chemical doping is a powerful method to improve the charge transport and to control the conductivity in organic semiconductors (OSs) for a wide range of electronic devices. We demonstrate protic ionic liquids (PILs) as effective p-dopant in both polymeric and small molecule OSs. In particular, we show that PILs promote single electron oxidation, which increases the hole concentration in the semiconducting film. The illustrated PIL-doping mechanism is compatible with materials processed by solution and is stable in air. We report the use of PIL-doping in hybrid solar cells based on triarylamine hole transporting materials, such as 2,2′,7,7′-tetrakis(N,N-di-p-methoxyphenyl-amine)9,9′-spirobifluorene (spiro-OMeTAD). We show improved power conversion efficiency by replacing lithium salts, typical p-dopants for spiro-OMeTAD, with PILs. We use photovoltage–photocurrent decay and photoinduced absorption spectroscopy to establish that significantly improved device performance is mainly due to reduced charge trans...