scispace - formally typeset
Search or ask a question

Showing papers on "Quantum dot published in 2021"


Journal ArticleDOI
01 Mar 2021-Nature
TL;DR: A four-qubit quantum processor based on hole spins in germanium quantum dots is demonstrated and coherent evolution is obtained by incorporating dynamical decoupling, a step towards quantum error correction and quantum simulation using quantum dots.
Abstract: The prospect of building quantum circuits1,2 using advanced semiconductor manufacturing makes quantum dots an attractive platform for quantum information processing3,4. Extensive studies of various materials have led to demonstrations of two-qubit logic in gallium arsenide5, silicon6–12 and germanium13. However, interconnecting larger numbers of qubits in semiconductor devices has remained a challenge. Here we demonstrate a four-qubit quantum processor based on hole spins in germanium quantum dots. Furthermore, we define the quantum dots in a two-by-two array and obtain controllable coupling along both directions. Qubit logic is implemented all-electrically and the exchange interaction can be pulsed to freely program one-qubit, two-qubit, three-qubit and four-qubit operations, resulting in a compact and highly connected circuit. We execute a quantum logic circuit that generates a four-qubit Greenberger−Horne−Zeilinger state and we obtain coherent evolution by incorporating dynamical decoupling. These results are a step towards quantum error correction and quantum simulation using quantum dots. Using germanium quantum dots, a four-qubit processor capable of single-, two-, three-, and four-qubit gates, demonstrated by the creation of four-qubit Greenberger−Horne−Zeilinger states, is the largest yet realized with solid-state electron spins.

222 citations


Journal ArticleDOI
01 Nov 2021-Nature
TL;DR: In this article, a fluorinated triphenylphosphine oxide (FPO) was used to control the cation diffusion during film deposition and suppress the formation of low-thickness perovskite QW surfaces.
Abstract: Light-emitting diodes (LEDs) based on perovskite quantum dots have shown external quantum efficiencies (EQEs) of over 23% and narrowband emission, but suffer from limited operating stability1. Reduced-dimensional perovskites (RDPs) consisting of quantum wells (QWs) separated by organic intercalating cations show high exciton binding energies and have the potential to increase the stability and the photoluminescence quantum yield2,3. However, until now, RDP-based LEDs have exhibited lower EQEs and inferior colour purities4–6. We posit that the presence of variably confined QWs may contribute to non-radiative recombination losses and broadened emission. Here we report bright RDPs with a more monodispersed QW thickness distribution, achieved through the use of a bifunctional molecular additive that simultaneously controls the RDP polydispersity while passivating the perovskite QW surfaces. We synthesize a fluorinated triphenylphosphine oxide additive that hydrogen bonds with the organic cations, controlling their diffusion during RDP film deposition and suppressing the formation of low-thickness QWs. The phosphine oxide moiety passivates the perovskite grain boundaries via coordination bonding with unsaturated sites, which suppresses defect formation. This results in compact, smooth and uniform RDP thin films with narrowband emission and high photoluminescence quantum yield. This enables LEDs with an EQE of 25.6% with an average of 22.1 ±1.2% over 40 devices, and an operating half-life of two hours at an initial luminance of 7,200 candela per metre squared, indicating tenfold-enhanced operating stability relative to the best-known perovskite LEDs with an EQE exceeding 20%1,4–6. The efficiency and operating lifetimes of perovskite light-emitting diodes is improved by using a fluorinated triphenylphosphine oxide additive to control the cation diffusion during film deposition and passivate the surface.

209 citations


Journal ArticleDOI
TL;DR: Perovskite quantum dots (PeQDs) have been regarded as an alternative to traditional phosphor color converters in the backlit display to improve the color gamut and rendition of LCD as discussed by the authors.
Abstract: Perovskite quantum dots (PeQDs) have been regarded as an alternative to traditional phosphor color converters in the backlit display to improve the color gamut and rendition of LCD. However, the pe...

197 citations


Journal ArticleDOI
TL;DR: In this paper, a hybrid interfacial architecture consisting of CsPbI3 quantum dot/PCBM heterojunction was developed for efficient charge transfer and mechanical adhesion.
Abstract: All-inorganic CsPbI3 perovskite quantum dots have received substantial research interest for photovoltaic applications because of higher efficiency compared to solar cells using other quantum dots materials and the various exciting properties that perovskites have to offer These quantum dot devices also exhibit good mechanical stability amongst various thin-film photovoltaic technologies We demonstrate higher mechanical endurance of quantum dot films compared to bulk thin film and highlight the importance of further research on high-performance and flexible optoelectronic devices using nanoscale grains as an advantage Specifically, we develop a hybrid interfacial architecture consisting of CsPbI3 quantum dot/PCBM heterojunction, enabling an energy cascade for efficient charge transfer and mechanical adhesion The champion CsPbI3 quantum dot solar cell has an efficiency of 151% (stabilized power output of 1461%), which is among the highest report to date Building on this strategy, we further demonstrate a highest efficiency of 123% in flexible quantum dot photovoltaics

166 citations


Journal ArticleDOI
24 Sep 2021-ACS Nano
TL;DR: In this article, the authors highlight the advantages of these biomass-based carbon dots in terms of synthesis, properties, and applications in the biomedical field and highlight the future development of biomass derived quantum dots.
Abstract: Carbon dots have been considered as a solution to the challenges that semiconductor quantum dots have encountered because they are more biocompatible and can be synthesized from abundant and nontoxic materials such as biomass. This review will highlight the advantages of these biomass-based carbon dots in terms of synthesis, properties, and applications in the biomedical field. Furthermore, future applications especially in the biomedical field of biomass-based carbon dots as well as the challenges of semiconductor quantum dots such as biocompatibility, photobleaching, environmental challenges, toxicity, and poor solubility will be discussed in detail. Biomass-derived quantum dots, a subsection of carbon dots that are the most desirable for future research, will be focused upon including from synthesis to applications. Finally, the future development of biomass derived quantum dots in the biomedical field will be discussed and evaluated to unlock the potential for their applications.

161 citations


Journal ArticleDOI
TL;DR: In this article, a large-area LSC (100 × 225 cm2) based on colloidal carbon quantum dots (C-dots) synthesized via a space-confined vacuum-heating approach was presented.
Abstract: Luminescent solar concentrators (LSCs) are large-area sunlight collectors coupled to small area solar cells, for efficient solar-to-electricity conversion. The three key points for the successful market penetration of LSCs are: (i) removal of light losses due to reabsorption during light collection; (ii) high light-to-electrical power conversion efficiency of the final device; (iii) long-term stability of the LSC structure related to the stability of both the matrix and the luminophores. Among various types of fluorophores, carbon quantum dots (C-dots) offer a wide absorption spectrum, high quantum yield, non-toxicity, environmental friendliness, low-cost, and eco-friendly synthetic methods. However, they are characterized by a relatively small Stokes shift, compared to inorganic quantum dots, which limits the highest external optical efficiency that can be obtained for a large-area single-layer LSC (>100 cm2) based on C-dots below 2%. Herein, we report highly efficient large-area LSCs (100–225 cm2) based on colloidal C-dots synthesized via a space-confined vacuum-heating approach. This one batch reaction could produce Gram-scale C-dots with a high quantum yield (QY) (∼65%) using eco-friendly citric acid and urea as precursors. Thanks to their very narrow size distribution, the C-dots produced via the space-confined vacuum-heating approach had a large Stokes shift of 0.53 eV, 50% larger than C-dots synthesized via a standard solvothermal reaction using the same precursors with a similar absorption range. The large-area LSC (15 × 15 × 0.5 cm3) prepared by using polyvinyl pyrrolidone (PVP) polymer as a matrix exhibited an external optical efficiency of 2.2% (under natural sun irradiation, 60 mW cm−2, uncharacterized spectrum). After coupling to silicon solar cells, the LSC exhibited a power conversion efficiency (PCE) of 1.13% under natural sunlight illumination (20 mW cm−2, uncharacterized spectrum). These unprecedented results were obtained by completely suppressing the reabsorption losses during light collection, as proved by optical spectroscopy. These findings demonstrate the possibility of obtaining eco-friendly, high-efficiency, large-area LSCs through scalable production techniques, paving the way to the lab-to-fab transition of this kind of devices.

142 citations


Journal ArticleDOI
TL;DR: In this paper, an acid etching-driven ligand exchange strategy was devised for achieving pure-blue emitting small-sized (≈4nm) CsPbBr3 perovskite quantum dots (QDs) with ultralow trap density and excellent stability.
Abstract: The research on metal halide perovskite light-emitting diodes (PeLEDs) with green and infrared emission has demonstrated significant progress in achieving higher functional performance. However, the realization of stable pure-blue (≈470 nm wavelength) PeLEDs with increased brightness and efficiency still constitutes a considerable challenge. Here, a novel acid etching-driven ligand exchange strategy is devised for achieving pure-blue emitting small-sized (≈4 nm) CsPbBr3 perovskite quantum dots (QDs) with ultralow trap density and excellent stability. The acid, hydrogen bromide (HBr), is employed to etch imperfect [PbBr6 ]4- octahedrons, thereby removing surface defects and excessive carboxylate ligands. Subsequently, didodecylamine and phenethylamine are successively introduced to bond the residual uncoordinated sites of the QDs and attain in situ exchange with the original long-chain organic ligands, resulting in near-unity quantum yield (97%) and remarkable stability. The QD-based PeLEDs exhibit pure-blue electroluminescence at 470 nm (corresponding to the Commission Internationale del'Eclairage (CIE) (0.13, 0.11) coordinates), an external quantum efficiency of 4.7%, and a remarkable luminance of 3850 cd m-2 , which is the highest brightness reported so far for pure-blue PeLEDs. Furthermore, the PeLEDs exhibit robust durability, with a half-lifetime exceeding 12 h under continuous operation, representing a record performance value for blue PeLEDs.

139 citations


Journal ArticleDOI
TL;DR: In this article, an inorganic ligand exchange was proposed to improve the phase stability of CsPbI3 perovskites and increase the thermal transport of the QD solids.
Abstract: The all-inorganic nature of CsPbI3 perovskites allows to enhance stability in perovskite devices. Research efforts have led to improved stability of the black phase in CsPbI3 films; however, these strategies-including strain and doping-are based on organic-ligand-capped perovskites, which prevent perovskites from forming the close-packed quantum dot (QD) solids necessary to achieve high charge and thermal transport. We developed an inorganic ligand exchange that leads to CsPbI3 QD films with superior phase stability and increased thermal transport. The atomic-ligand-exchanged QD films, once mechanically coupled, exhibit improved phase stability, and we link this to distributing strain across the film. Operando measurements of the temperature of the LEDs indicate that KI-exchanged QD films exhibit increased thermal transport compared to controls that rely on organic ligands. The LEDs exhibit a maximum EQE of 23 % with an electroluminescence emission centered at 640 nm (FWHM: ≈31 nm). These red LEDs provide an operating half-lifetime of 10 h (luminance of 200 cd m-2 ) and an operating stability that is 6× higher than that of control devices.

134 citations


Journal ArticleDOI
08 Apr 2021-ACS Nano
TL;DR: A review of nanocrystal quantum dot research from early discoveries to the present day and into the future can be found in this article, where the authors describe the extensive body of theoretical and experimental knowledge that comprises the modern science of QDs.
Abstract: This review traces nanocrystal quantum dot (QD) research from the early discoveries to the present day and into the future. We describe the extensive body of theoretical and experimental knowledge that comprises the modern science of QDs. Indeed, the spatial confinement of electrons, holes, and excitons in nanocrystals, coupled with the ability of modern chemical synthesis to make complex designed structures, is today enabling multiple applications of QD size-tunable electronic and optical properties.

132 citations


Journal ArticleDOI
01 Aug 2021
TL;DR: The use of colloidal quantum dots in the development of next-generation electronics, including luminescent, optoelectronic, memory and thermoelectric devices, is discussed in this article.
Abstract: The development of electronics is increasingly dependent on low-cost, flexible, solution-processed semiconductors. Colloidal quantum dots are solution-processed semiconducting nanocrystals that have a size-tunable bandgap and can be fabricated on a range of substrates. Here we review developments in colloidal quantum dot electronics, focusing on luminescent, optoelectronic, memory and thermoelectric devices. We examine the role of surface chemistry in the suppression of non-radiative processes, the control of light–matter interactions and the regulation of carrier transport properties. We also highlight the prospects of perovskite quantum dots as single-photon sources, the design of new classes of colloidal quantum dots and superlattices for emerging applications and the role of hybrid device architectures in compensating for the limited carrier mobility in colloidal quantum dot solids while maintaining their tunable spectral response. This Review examines the use of colloidal quantum dots in the development of next-generation electronics, including luminescent, optoelectronic, memory and thermoelectric devices.

128 citations


Journal ArticleDOI
TL;DR: In this paper, the status of colloidal quantum dot (CQD) lasing is assessed and the existing challenges and opportunities are discussed, with a particular focus on approaches for suppressing nonradiative Auger recombination, novel optical-gain concepts enabled by strong exciton-exciton interactions and controlled CQD charging, effects of nanocrystal form factors on light amplification, and practical architectures for realizing electrically pumped cQD lasers.
Abstract: Semiconductor nanocrystals represent a promising class of solution-processable optical-gain media that can be manipulated via inexpensive, easily scalable colloidal techniques. Due to their extremely small sizes (typically <10 nm), their properties can be directly controlled via effects of quantum confinement; therefore, they are often termed colloidal quantum dots (CQDs). In addition to size-tunable emission wavelengths, CQDs offer other benefits for lasing applications, including low optical-gain thresholds and high temperature stability of lasing characteristics. Recent progress in understanding and practical control of processes impeding light amplification in CQDs has resulted in several breakthroughs, including the demonstration of optically pumped continuous-wave lasing, the realization of optical gain with direct current electrical injection and the development of dual-function electroluminescent devices that also operate as optically pumped lasers. The purpose of this Review is to assess the status of the field of CQD lasing and discuss the existing challenges and opportunities. A particular focus is on approaches for suppressing nonradiative Auger recombination, novel optical-gain concepts enabled by strong exciton–exciton interactions and controlled CQD charging, effects of nanocrystal form factors on light amplification and practical architectures for realizing electrically pumped CQD lasers. This overview suggests that the accumulated knowledge, along with the approaches developed for manipulating the optical-gain properties of colloidal nanostructures, perfectly position the CQD field for successfully addressing a long-standing challenge: the realization of CQD-based laser diodes. Colloidal quantum dots are promising materials for realizing versatile, wavelength-tunable, solution-processed lasers. This Review surveys recent advances in colloidal quantum dot lasing, provides an in-depth analysis of outstanding challenges and discusses a path forward to implementing technologically viable lasing devices.

Journal ArticleDOI
27 May 2021-Nature
TL;DR: These perovskite-type (ABO3) binary and ternary nanocrystal superlattices, created via the shape-directed co-assembly of steric-stabilized, highly luminescent cubic CsPbBr3 nanocrystals, exhibit superfluorescence-a collective emission that results in a burst of photons with ultrafast radiative decay that could be tailored for use in ultrabright (quantum) light sources.
Abstract: Atomically defined assemblies of dye molecules (such as H and J aggregates) have been of interest for more than 80 years because of the emergence of collective phenomena in their optical spectra1–3, their coherent long-range energy transport, their conceptual similarity to natural light-harvesting complexes4,5, and their potential use as light sources and in photovoltaics. Another way of creating versatile and controlled aggregates that exhibit collective phenomena involves the organization of colloidal semiconductor nanocrystals into long-range-ordered superlattices6. Caesium lead halide perovskite nanocrystals7–9 are promising building blocks for such superlattices, owing to the high oscillator strength of bright triplet excitons10, slow dephasing (coherence times of up to 80 picoseconds) and minimal inhomogeneous broadening of emission lines11,12. So far, only single-component superlattices with simple cubic packing have been devised from these nanocrystals13. Here we present perovskite-type (ABO3) binary and ternary nanocrystal superlattices, created via the shape-directed co-assembly of steric-stabilized, highly luminescent cubic CsPbBr3 nanocrystals (which occupy the B and/or O lattice sites), spherical Fe3O4 or NaGdF4 nanocrystals (A sites) and truncated-cuboid PbS nanocrystals (B sites). These ABO3 superlattices, as well as the binary NaCl and AlB2 superlattice structures that we demonstrate, exhibit a high degree of orientational ordering of the CsPbBr3 nanocubes. They also exhibit superfluorescence—a collective emission that results in a burst of photons with ultrafast radiative decay (22 picoseconds) that could be tailored for use in ultrabright (quantum) light sources. Our work paves the way for further exploration of complex, ordered and functionally useful perovskite mesostructures. Through precise structural engineering, perovskite nanocrystals are co-assembled with other nanocrystal materials to form a range of binary and ternary perovskite-type superlattices that exhibit superfluorescence.

Journal ArticleDOI
TL;DR: In this article, the role of edge effects and attached functional groups on flexible optoelectronic devices for energy harvesting applications is discussed, and the underlying challenges and future prospects for CQD/GQD-based devices with respect to their performance, sustainability, durability, and costeffectiveness to efficiently realize their industrial scale-up.
Abstract: Carbon quantum dots (CQDs) and graphene quantum dots (GQDs) are new carbon-based nanomaterials with unique electronic, optical, and physicochemical properties. Both CQDs and GQDs have received attention in different material research fields such as optoelectronics, energy harvesting, chemical sensing, and biosensing. The combination of edge effects and/or zero-dimensional quantum-confined structures make them a promising alternative for applications like LED emitters, photodetectors, solar cells, water splitting, and optoelectronic devices. Despite the great potential for using these materials in energy harvesters, their potential in energy applications has not yet been reviewed thoroughly. In this review, we particularly focused on the role of edge effects and attached functional groups on flexible optoelectronic devices for energy harvesting applications. In addition, we also discussed the underlying challenges and future prospects for CQD/GQD-based devices with respect to their performance, sustainability, durability, and cost-effectiveness to efficiently realize their industrial scale-up.

Journal ArticleDOI
TL;DR: In this article, two carbon-based quantum dots, carbon nitride quantum dots (CNQDs) and nitrogen-doped carbon quantum dot (NCQDs), were modified with BiVO4 heterojunctions to improve photocatalytic performance.

Journal ArticleDOI
TL;DR: In this article, a point-to-point p-n heterojunction hybrid supported on stereoscopic nanoflower structure formed by numerous nanosheets in alternation way exhibits more excellent photocatalytic hydrogen evolution performance due to rich activity sites, large specific surface area, enhanced adsorption on protons and so on.

Journal ArticleDOI
TL;DR: Five main surface modification techniques with outstanding results are investigated, including doping, surface functionalization, polymer capping, nano-composite and core-shell structures, and the drawbacks and challenges in each of these methods are discussed.


Journal ArticleDOI
TL;DR: In this article, the authors describe the synthesis, assembly, and photophysical properties of colloidal QDs that have captured scientific imagination and have been harnessed in optical applications, focusing especially on the current understanding of their quantum coherent effects and opportunities to exploit QDs as platforms for quantum information science.
Abstract: Colloidal quantum dots (QDs) are nanoscale semiconductor crystals with surface ligands that enable their dispersion in solvents. Quantum confinement effects facilitate wave function engineering to sculpt the spatial distribution of charge and spin states and thus the energy and dynamics of QD optical transitions. Colloidal QDs can be integrated in devices using solution-based assembly methods to position single QDs and to create ordered QD arrays. Here, we describe the synthesis, assembly, and photophysical properties of colloidal QDs that have captured scientific imagination and have been harnessed in optical applications. We focus especially on the current understanding of their quantum coherent effects and opportunities to exploit QDs as platforms for quantum information science. Freedom in QD design to isolate and control the quantum mechanical properties of charge, spin, and light presents various approaches to create systems with robust, addressable quantum states. We consider the attributes of QDs for optically addressable qubits in emerging quantum computation, sensing, simulation, and communication technologies, e.g., as robust sources of indistinguishable, single photons that can be integrated into photonic structures to amplify, direct, and tune their emission or as hosts for isolated, coherent spin states that can be coupled to light or to other spins in QD arrays.

Journal ArticleDOI
TL;DR: In this article, an alloyed silver gold selenide (AgAuSe) QD with a bright emission from 820 to 1170 nm achieved a record absolute PLQY of 65.3% at 978 nm emission among NIR-II QDs without a toxic element and a long lifetime of 4.58 μs.
Abstract: Semiconductor quantum dots (QDs) with photoluminescence (PL) emission at 900-1700 nm (denoted as the second near-infrared window, NIR-II) exhibit much-depressed photon absorption and scattering, which has stimulated extensive researches in biomedical imaging and NIR devices. However, it is very challenging to develop NIR-II QDs with a high photoluminescence quantum yield (PLQY) and excellent biocompatibility. Herein, we designed and synthesized an alloyed silver gold selenide (AgAuSe) QD with a bright emission from 820 to 1170 nm and achieved a record absolute PLQY of 65.3% at 978 nm emission among NIR-II QDs without a toxic element and a long lifetime of 4.58 μs. It is proved that the high PLQY and long lifetime are mainly attributed to the prevented nonradiative transition of excitons, probably resulted from suppressing cation vacancies and crystal defects from the high mobility of Ag ions by alloying Au atoms. These high-PLQY QDs with nontoxic heavy metal exhibit great application potential in bioimaging, light emitting diodes (LEDs), and photovoltaic devices.

Journal ArticleDOI
TL;DR: In this paper, a new structure for a metal-free photocatalytic system with a promising efficiency for hydrogen production through the combination of an organic semiconducting polymer (PFTBTA) and N-doped carbon quantum dots (NCQDs) covered by PS-PEGCOOH to produce heterostructured polymer dots (Pdots).
Abstract: Given the photocatalytic properties of semiconducting polymers and carbon quantum dots (CQDs), we report a new structure for a metal-free photocatalytic system with a promising efficiency for hydrogen production through the combination of an organic semiconducting polymer (PFTBTA) and N-doped carbon quantum dots (NCQDs) covered by PS-PEGCOOH to produce heterostructured photocatalysts in the form of polymer dots (Pdots). This design could provide strong interactions between the two materials owing to the space confinement effect in nanometer-sized Pdots. Small particle size NCQDs are easy to insert inside the Pdot, which leads to an increase in the stability of the Pdot structure and enhances the hydrogen evolution rate by approximately 5-fold over that of pure PFTBTA Pdots. The photophysics and the mechanism behind the catalytic activity of our design are investigated by transient absorption measurement, demonstrating the role of NCQDs to enhance the charge separation and the photocatalytic efficiency of the PFTBTA Pdot.

Journal ArticleDOI
TL;DR: Various functionalization and surface modification makes quantum dots suitable for application in pharmaceutical field such as biomedical imaging, drug delivery, drug release study and diagnosis, and the regulatory status of quantum dots is not yet clear.

Journal ArticleDOI
TL;DR: The CsPbBr3@PCN-333(Fe) composite exhibited excellent and stable oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) catalytic activities in aprotic systems and worked as the synergistic photocathode in the photoassisted Li-O2 battery.
Abstract: Metal halide perovskite quantum dots, with high light-absorption coefficients and tunable electronic properties, have been widely studied as optoelectronic materials, but their applications in photocatalysis are hindered by their insufficient stability because of the oxidation and agglomeration under light, heat, and atmospheric conditions. To address this challenge, herein, we encapsulated CsPbBr3 nanocrystals into a stable iron-based metal-organic framework (MOF) with mesoporous cages (∼5.5 and 4.2 nm) via a sequential deposition route to obtain a perovskite-MOF composite material, CsPbBr3@PCN-333(Fe), in which CsPbBr3 nanocrystals were stabilized from aggregation or leaching by the confinement effect of MOF cages. The monodispersed CsPbBr3 nanocrystals (4-5 nm) within the MOF lattice were directly observed by transmission electron microscopy and corresponding mapping analysis and further confirmed by powder X-ray diffraction, infrared spectroscopy, and N2 adsorption characterizations. Density functional theory calculations further suggested a significant interfacial charge transfer from CsPbBr3 quantum dots to PCN-333(Fe), which is ideal for photocatalysis. The CsPbBr3@PCN-333(Fe) composite exhibited excellent and stable oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) catalytic activities in aprotic systems. Furthermore, CsPbBr3@PCN-333(Fe) composite worked as the synergistic photocathode in the photoassisted Li-O2 battery, where CsPbBr3 and PCN-333(Fe) acted as optical antennas and ORR/OER catalytic sites, respectively. The CsPbBr3@PCN-333(Fe) photocathode showed lower overpotential and better cycling stability compared to CsPbBr3 nanocrystals or PCN-333(Fe), highlighting the synergy between CsPbBr3 and PCN-333(Fe) in the composite.

Journal ArticleDOI
TL;DR: In this paper, low loading is one of the bottlenecks limiting the performance of quantum dot-sensitized solar cells (QDSCs), and although previous QD secondary deposition relying on electrostatic interaction can impr...
Abstract: Low loading is one of the bottlenecks limiting the performance of quantum dot sensitized solar cells (QDSCs). Although previous QD secondary deposition relying on electrostatic interaction can impr...


Journal ArticleDOI
TL;DR: Li et al. as mentioned in this paper designed a novel hierarchically porous and defective TiO2 modified by Ag quantum dots via a hydrothermal process assisted with organic surfactant and subsequently in-situ photodeposition method.

Journal ArticleDOI
TL;DR: In this article, an oil-soluble ZnxCd1-xS quantum dot (ZCS QD) with a uniform particle size distribution was prepared by a hot-injection method, which exhibited excellent photocatalytic H2-production performance in the presence of glycerin and Ni2+, with an apparent quantum efficiency of 159% under irradiation of 420 nm light.




Journal ArticleDOI
TL;DR: In this paper, a new photocatalyst (UiOS-Cu-CdS/ZnS, abbreviated as SCu-CZS) with hierarchical structure is well designed by loading CdS and ZnS quantum dots (QDs) onto decorated thiol-functionalized UiO-66 metal-organic frameworks (MOFs) for water splitting.