scispace - formally typeset
Search or ask a question

Showing papers on "Seebeck coefficient published in 2019"


Journal ArticleDOI
TL;DR: An n-type Ag2Se film on flexible nylon membrane with an ultrahigh power factor and excellent flexibility is reported, presenting a facile method to deliver inorganic nanowire films with high power factors and flexibility.
Abstract: Researches on flexible thermoelectric materials usually focus on conducting polymers and conducting polymer-based composites; however, it is a great challenge to obtain high thermoelectric properties comparable to inorganic counterparts. Here, we report an n-type Ag2Se film on flexible nylon membrane with an ultrahigh power factor ~987.4 ± 104.1 μWm−1K−2 at 300 K and an excellent flexibility (93% of the original electrical conductivity retention after 1000 bending cycles around a 8-mm diameter rod). The flexibility is attributed to a synergetic effect of the nylon membrane and the Ag2Se film intertwined with numerous high-aspect-ratio Ag2Se grains. A thermoelectric prototype composed of 4-leg of the Ag2Se film generates a voltage and a maximum power of 18 mV and 460 nW, respectively, at a temperature difference of 30 K. This work opens opportunities of searching for high performance thermoelectric film for flexible thermoelectric devices. Although flexible thermoelectric materials based on conducting polymers are attractive for energy harvesting, their performance is inferior to their inorganic counterparts. Here, the authors present a facile method to deliver inorganic nanowire films with high power factor and flexibility.

308 citations


Journal ArticleDOI
01 Nov 2019-Energy
TL;DR: The principles of thermoelectricity are described and an explanation of current and upcoming materials are presented and developed models and various performed optimization of thermOElectric applications by using non-equilibrium thermodynamics and finite time thermodynamics are discussed.

293 citations



Journal ArticleDOI
01 Dec 2019-Nature
TL;DR: A high intrinsic thermoelectric figure of merit is found for a metastable thin-film Fe2V0.8W0.2Al Heusler alloy, which may arise from a large differential density of states at the Fermi level and a Weyl-like electron dispersion close to the Fermani level, which indicates a high mobility of charge carriers owing to linear crossing in the electronic bands.
Abstract: Thermoelectric materials transform a thermal gradient into electricity. The efficiency of this process relies on three material-dependent parameters: the Seebeck coefficient, the electrical resistivity and the thermal conductivity, summarized in the thermoelectric figure of merit. A large figure of merit is beneficial for potential applications such as thermoelectric generators. Here we report the thermal and electronic properties of thin-film Heusler alloys based on Fe2V0.8W0.2Al prepared by magnetron sputtering. Density functional theory calculations suggest that the thin films are metastable states, and measurements of the power factor—the ratio of the Seebeck coefficient squared divided by the electrical resistivity—suggest a high intrinsic figure of merit for these thin films. This may arise from a large differential density of states at the Fermi level and a Weyl-like electron dispersion close to the Fermi level, which indicates a high mobility of charge carriers owing to linear crossing in the electronic bands. A high intrinsic thermoelectric figure of merit is found for a metastable thin-film Fe2V0.8W0.2Al Heusler alloy.

205 citations


Journal ArticleDOI
TL;DR: The results demonstrate the possibility of application of topological hard magnetic semimetals for low-power thermoelectric devices based on the Nernst effect and are thus valuable for the comprehensive understanding of transport properties in this class of materials.
Abstract: The discovery of magnetic topological semimetals has recently attracted significant attention in the field of topology and thermoelectrics. In a thermoelectric device based on the Nernst geometry, an external magnet is required as an integral part. Reported is a zero-field Nernst effect in a newly discovered hard-ferromagnetic kagome-lattice Weyl-semimetal Co3 Sn2 S2 . A maximum Nernst thermopower of ≈3 µV K-1 at 80 K in zero field is achieved in this magnetic Weyl-semimetal. The results demonstrate the possibility of application of topological hard magnetic semimetals for low-power thermoelectric devices based on the Nernst effect and are thus valuable for the comprehensive understanding of transport properties in this class of materials.

181 citations


Journal ArticleDOI
TL;DR: It is shown that the ion-polymer matrix interaction is crucial to control the sign and magnitude of the ionic Seebeck coefficient, and the ambipolar gel can be easily screen printed, enabling large-area device manufacturing at low cost.
Abstract: Measuring temperature and heat flux is important for regulating any physical, chemical, and biological processes. Traditional thermopiles can provide accurate and stable temperature reading but they are based on brittle inorganic materials with low Seebeck coefficient, and are difficult to manufacture over large areas. Recently, polymer electrolytes have been proposed for thermoelectric applications because of their giant ionic Seebeck coefficient, high flexibility and ease of manufacturing. However, the materials reported to date have positive Seebeck coefficients, hampering the design of ultra-sensitive ionic thermopiles. Here we report an “ambipolar” ionic polymer gel with giant negative ionic Seebeck coefficient. The latter can be tuned from negative to positive by adjusting the gel composition. We show that the ion-polymer matrix interaction is crucial to control the sign and magnitude of the ionic Seebeck coefficient. The ambipolar gel can be easily screen printed, enabling large-area device manufacturing at low cost.

177 citations


Journal ArticleDOI
16 Jan 2019-Joule
TL;DR: In this paper, the authors discuss current trends in developing strategies to decouple the electrical conductivity, Seebeck coefficient, and thermal conductivity of inorganic thermoelectric (TE) materials.

160 citations


Journal ArticleDOI
TL;DR: Guin et al. as mentioned in this paper showed that the anomalous Nernst effect originates from a large net Berry curvature near the Fermi level associated with nodal lines and Weyl points.
Abstract: Applying a temperature gradient in a magnetic material generates a voltage that is perpendicular to both the heat flow and the magnetization. This phenomenon is the anomalous Nernst effect (ANE), which was long thought to be proportional to the value of the magnetization. However, more generally, the ANE has been predicted to originate from a net Berry curvature of all bands near the Fermi level (EF). Subsequently, a large anomalous Nernst thermopower ( $${\boldsymbol{S}}_{{\boldsymbol{yx}}}^{\boldsymbol{A}}$$ ) has recently been observed in topological materials with no net magnetization but a large net Berry curvature [Ωn(k)] around EF. These experiments clearly fall outside the scope of the conventional magnetization model of the ANE, but a significant question remains. Can the value of the ANE in topological ferromagnets exceed the highest values observed in conventional ferromagnets? Here, we report a remarkably high $${\boldsymbol{S}}_{{\boldsymbol{yx}}}^{\boldsymbol{A}}$$ -value of ~6.0 µV K−1 in the ferromagnetic topological Heusler compound Co2MnGa at room temperature, which is approximately seven times larger than any anomalous Nernst thermopower value ever reported for a conventional ferromagnet. Combined electrical, thermoelectric, and first-principles calculations reveal that this high-value of the ANE arises from a large net Berry curvature near the Fermi level associated with nodal lines and Weyl points. Thermoelectric devices that convert heat into electricity may benefit from the unusual temperature sensitivity of cobalt–manganese–gallium (Co2MnGa) ferromagnets. When one end of a magnetized metal is made hot and the other cold, redistribution of electrons creates an electric voltage perpendicular to the temperature gradient. Satya N. Guin from the Max Planck Institute for Chemical Physics of Solids in Dresden, Germany, and colleagues now report how certain class of material can boost the electrical power produced from “waste heat” source using transverse thermoelectric effect. When the team applied magnetic fields to Co2MnGa and characterized its transverse electrical response to temperature gradient, they saw voltage generation several times higher than expected. Computer simulations indicated that the crystal geometry distorted the energy levels available to electron making it easier for electrons to move when thermally excited. We report a high anomalous Nernst thermopower ( $$S_{yx}^A$$ ) -value of ~6.0 µV K−1 at room temperature in the ferromagnetic topological Heusler compound Co2MnGa. The measured value is seven-times larger than any anomalous Nernst thermopower value ever reported for a conventional ferromagnet. The high anomalous Nernst effect originates from a large net Berry curvature near the Fermi level associated with nodal lines and Weyl points.

159 citations



Journal ArticleDOI
16 Oct 2019-Joule
TL;DR: In this paper, the authors reported a high zT of ∼2.1 at 723 K in In and Bi co-doped GeTe along with an extremely high TE conversion efficiency of ∼12.3% in a single-leg thermoelectric generator for the temperature difference of 445 K.

145 citations


Journal ArticleDOI
TL;DR: It is demonstrated that enhanced thermoelectric power factor S2/r can be achieved by incorporating magnetic interaction in ferromagnetic metals via the spin fluctuation arising from itinerant electrons, and shows that electron-doped Heusler alloys exhibit weak ferromagnetism at TC near room temperature with a small magnetic moment.
Abstract: Increasing demand for higher energy efficiency calls for waste heat recovery technology. Thus, facilitating practical thermoelectric generation systems is strongly desired. One option is enhancing the thermoelectric power factor, S2/r, where S is the Seebeck coefficient and r is the electrical resistivity, although it is still challenging because of the trade-off between S and r. We demonstrate that enhanced S2/r can be achieved by incorporating magnetic interaction in ferromagnetic metals via the spin fluctuation arising from itinerant electrons. We show that electron-doped Heusler alloys exhibit weak ferromagnetism at TC near room temperature with a small magnetic moment. A pronounced enhancement around TC was observed, with a 20% improvement in the power factor from the case where spin fluctuation is suppressed by applying magnetic field. This result supports the merit of using spin fluctuation to further enhance thermoelectric properties and the potential to further probe correlations and synergy between magnetic and thermoelectric fields.


Journal ArticleDOI
TL;DR: Several key factors which dictate the thermoelectric efficiency and performance of various electronic devices are discussed, such as the thermal conductivity, electric transportation, electronic band structures, and band convergence of the hybrid materials.
Abstract: Hybrid organic-inorganic materials have been considered as a new candidate in the field of thermoelectric materials since the last decade owing to their great potential to enhance the thermoelectric performance by utilizing the low thermal conductivity of organic materials and the high Seebeck coefficient, and high electrical conductivity of inorganic materials. Herein, we provide an overview of interfacial engineering in the synthesis of various organic-inorganic thermoelectric hybrid materials, along with the dimensional design for tuning their thermoelectric properties. Interfacial effects are examined in terms of nanostructures, physical properties, and chemical doping between the inorganic and organic components. Several key factors which dictate the thermoelectric efficiency and performance of various electronic devices are also discussed, such as the thermal conductivity, electric transportation, electronic band structures, and band convergence of the hybrid materials.

Journal ArticleDOI
TL;DR: In this article, the authors demonstrate how the local structural distortions and the associated ferroelectric lattice instability induced soft polar phonons effectively scatter the heat carrying acoustic phonons and help achieve ultralow lattice thermal conductivity in SnTe.
Abstract: High thermoelectric performance of a crystalline solid requires it to have low thermal conductivity which is one of the utmost material challenges. Herein, we demonstrate how the local structural distortions and the associated ferroelectric lattice instability induced soft polar phonons effectively scatter the heat carrying acoustic phonons and help achieve ultralow lattice thermal conductivity in SnTe by engineering the instability near room temperature via Ge (x = 0–30 mol%) alloying. While Sn1−xGexTe possesses a global cubic structure above room temperature (x < 0.5), by analysing synchrotron X-ray pair distribution functions (PDFs) we showed that local rhombohedral distortion exists which is sustained up to the studied maximum temperature (∼600 K) above the ferroelectric transition (TC = 290 K). We showed that the local rhombohedral distortions in global cubic Sn1−xGexTe are predominantly associated with local Ge off-centering which forms a short-range chain-like structure and scatters acoustic phonons, resulting in an ultralow lattice thermal conductivity of ∼0.67 W m−1 K−1. In addition, Sb doping in Sn1−xGexTe enhances the Seebeck coefficient due to p-type carrier optimization and valence band convergence, which leads to a synergistic boost in the thermoelectric figure of merit, zT, to ∼1.6 at 721 K. The concept of engineering ferroelectric instability to achieve ultralow thermal conductivity is applicable to other crystalline solids, which opens up a general opportunity to enhance the thermoelectric performance.

Journal ArticleDOI
TL;DR: This work reports a record-high average ZT value of ∼1.6 at 300-793 K with maximum ZT values ranging from 0.8 at 300 K to 2.1 at 793 K in p-type SnSe crystals, which arises from the enhanced power factor and lowered lattice thermal conductivity through crystal structure modification via Te alloying.
Abstract: The simple binary compound SnSe has been reported as a robust thermoelectric material for energy conversion by showing strong anharmonicity and multiple electronic valence bands. Herein, we report a record-high average ZT value of ∼1.6 at 300-793 K with maximum ZT values ranging from 0.8 at 300 K to 2.1 at 793 K in p-type SnSe crystals. This remarkable thermoelectric performance arises from the enhanced power factor and lowered lattice thermal conductivity through crystal structure modification via Te alloying. Our results elucidate that Te alloying increases the carrier mobility by making the bond lengths more nearly equal and sharpening the valence bands; meanwhile, the Seebeck coefficient remains large due to multiple valence bands. As a result, a record-high power factor of ∼55 μW cm-1 K-2 at 300 K is achieved. Additionally, Te alloying promotes Sn atom displacements, thus leading to a lower lattice thermal conductivity. Our conclusions are well supported by electron localization function calculations, the Callaway model, and structural characterization via aberration-corrected scanning transmission electron microscopy. Our approach of modifying crystal structures could also be applied in other low-symmetry thermoelectric materials and represents a new strategy to enhance thermoelectric performance.

Journal ArticleDOI
TL;DR: It is reported that, under the temperature gradient applied simultaneously to both parallel and perpendicular directions of measurement, a metallic copper selenide, Cu2Se, shows two sign reversals and colossal values of S exceeding ±2 mV’K−1 in a narrow temperature range, 340 K < T’T – 400‬K, where a structure phase transition takes place.
Abstract: Both electrical conductivity σ and Seebeck coefficient S are functions of carrier concentration being correlated with each other, and the value of power factor S2σ is generally limited to less than 0.01 W m−1 K−2. Here we report that, under the temperature gradient applied simultaneously to both parallel and perpendicular directions of measurement, a metallic copper selenide, Cu2Se, shows two sign reversals and colossal values of S exceeding ±2 mV K−1 in a narrow temperature range, 340 K < T < 400 K, where a structure phase transition takes place. The metallic behavior of σ possessing larger magnitude exceeding 600 S cm−1 leads to a colossal value of S2σ = 2.3 W m–1 K–2. The small thermal conductivity less than 2 W m−1 K−1 results in a huge dimensionless figure of merit exceeding 400. This unusual behavior is brought about by the self-tuning carrier concentration effect in the low-temperature phase assisted by the high-temperature phase. Recent research efforts have aimed at discovering thermoelectric materials with high efficiency in the middle-low temperature range, where a majority of waste heat is lost to the ambient. Here, the authors discover colossal Seebeck coefficient values in metallic copper selenide from 340 K to 400 K.

Journal ArticleDOI
TL;DR: In this article, an improved quality criterion of bismuth telluride upon chromium substitution was reported, which indicated that taking advantage of such relatively easily implemented magnetic doping effects along with existing strategies can lead to enhanced efficiency of thermoelectric materials.

Journal ArticleDOI
TL;DR: Light is shed on monolayer SnP3 in use as a TE material and insights are supplied to further optimize the TE properties in similar systems.
Abstract: Monolayer SnP3 is a novel two-dimensional (2D) semiconductor material with high carrier mobility and large optical absorption coefficient, implying its potential applications in the photovoltaic and thermoelectric (TE) fields. Herein, we report on the TE properties of monolayer SnP3 utilizing first principles density functional theory (DFT) together with semiclassical Boltzmann transport theory. Results indicate that it exhibits a low lattice thermal conductivity of ∼4.97 W m-1 K-1 at room temperature, mainly originating from its small average acoustic group velocity (∼1.18 km s-1), large Gruneisen parameters (∼7.09), strong dipole-dipole interactions, and strong phonon-phonon scattering. A large in-plane charge transfer is observed, which results in a non-ignorable bipolar effect on the lattice thermal conductivity. The exhibited mixed mode between in-plane and out-of-plane vibrations enhances the complexity of the phonon phase space, which enhances the possibility of phonon scattering processes and results in suppression of thermal conductivity. A highly twofold degeneracy appearing at the K point gives a high Seebeck coefficient. Our calculated figure of merit (ZT) for optimal p-type doping at 500 K can approach 3.46 along the armchair direction, which is better than the theoretical value of 1.94 reported in the well-known TE material SnSe. Our studies here shed light on monolayer SnP3 in use as a TE material and supply insights to further optimize the TE properties in similar systems.

Journal ArticleDOI
TL;DR: A reduced SrTiO3 (r-STO) based PTE photodetector with sensitivity up to 1.2 V W−1 and broadband spectral response from 325 nm to 10.67 μm is demonstrated, opening up a new avenue towards searching for novel PTE materials beyond traditional thermoelectric materials for low-cost and high-performance photodentector at room temperature.
Abstract: The self-powered and ultra-broadband photodetectors based on photothermoelectric (PTE) effect are promising for diverse applications such as sensing, environmental monitoring, night vision and astronomy. The sensitivity of PTE photodetectors is determined by the Seebeck coefficient and the rising temperature under illumination. Previous PTE photodetectors mostly rely on traditional thermoelectric materials with Seebeck coefficients in the range of 100 μV K-1, and array structures with multiple units are usually employed to enhance the photodetection performance. Herein, we demonstrate a reduced SrTiO3 (r-STO) based PTE photodetector with sensitivity up to 1.2 V W-1 and broadband spectral response from 325 nm to 10.67 μm. The high performance of r-STO PTE photodetector is attributed to its intrinsic high Seebeck coefficient and phonon-enhanced photoresponse in the long wavelength infrared region. Our results open up a new avenue towards searching for novel PTE materials beyond traditional thermoelectric materials for low-cost and high-performance photodetector at room temperature.

Journal ArticleDOI
01 Mar 2019-Symmetry
TL;DR: The results indicate that the effect of initial stress, Thomson coefficient effect, and magnetic field are very pronounced in a thermo-porous elastic solid under G-N electromagnetic theory.
Abstract: The present work investigated the effect of Thomson and initial stress in a thermo-porous elastic solid under G-N electromagnetic theory. The Thomson coefficient affects the heat condition equation. A constant Thomson coefficient, instead of traditionally a constant Seebeck coefficient, is assumed. The charge density of the induced electric current is taken as a function of time. A normal mode method is proposed to analyze the problem and to obtain numerical solutions. The results that were obtained for all physical sizes are graphically illustrated and we offer a comparison between the type II G-N theory and the G-N theory of type III, both in the present case and in the absence of specific parameters, as initial stress, pores and the Thomson effect. Some particular cases are also discussed in the context of the problem. The results indicate that the effect of initial stress, Thomson coefficient effect, and magnetic field are very pronounced.

Journal ArticleDOI
TL;DR: In this paper, the synergetic optimization of electronic and thermal transport properties in rhombohedral GeTe doped with transition metal Ti is reported, where the Seebeck coefficient of Ge1-xTixTe is significantly increased and the corresponding thermal conductivity is decreased.

Journal ArticleDOI
Abstract: Since their discovery in the seventies, conducting polymers have been chemically designed to acquire specific optical and electrical properties for various applications. Poly(3,4-ethylenedioxythiop ...

Journal ArticleDOI
TL;DR: In this article, the authors proposed a new component, CdSe, which has a similar crystal structure and larger band gap compared to PbSe, and achieved a superior ZT value of ∼1.4 and ZTave of ∼0.7.
Abstract: PbSe is an alternative of the well-known moderate-temperature thermoelectric material PbTe, and has attracted much attention because of its advantages of high earth-abundance and low price of Se compared with Te. To enhance the thermoelectric performance of PbSe, its several shortcomings should be overcome, such as poor electrical conductivity, small Seebeck coefficient and bipolar thermal conductivity. Simultaneously improving these properties is a big challenge in the thermoelectric community. In this work, we successfully addressed these problems with PbSe by introducing just one component, CdSe, which has a similar crystal structure and larger band gap compared to PbSe. The introduction of CdSe realizes four positive effects: (1) improving the effective mass through flattening the conduction band; (2) decreasing the lattice thermal conductivity enormously by introducing hierarchical sub-nano defects; (3) keeping a high carrier mobility due to the nanostructure-free matrix; (4) suppressing the bipolar thermal conductivity via enlarging the band gap of PbSe. Due to all the above synergistically optimized electrical and thermal transport properties, a superior ZT value of ∼1.4 and ZTave of ∼0.7 are achieved in n-type PbSe through CdSe alloying, and the calculated conversion efficiency can reach 10.5%. Our results indicate that PbSe is a robust candidate for medium-temperature thermoelectric applications.

Journal ArticleDOI
TL;DR: In this paper, the spin-dependent thermoelectric transport properties of metallocene dimer-based molecular junctions are investigated using first-principles calculations in combination with a non-equilibrium Green's function method.
Abstract: Pure spin current is expected to be utilized for designing energy-saving devices. Using first-principles calculations in combination with a non-equilibrium Green's function method, the spin-dependent thermoelectric transport properties of metallocene dimer-based molecular junctions are investigated. The results show that spin-polarized currents can be achieved when a temperature difference is applied in molecular structures. It is found that the spin-polarized transport properties are different when transition metals in the dimers are different. It is interesting that a negative differential thermoelectric resistance and a perfect spin filtering effect can be found in chromocene dimer-based and manganocene dimer-based molecular junctions. Moreover, one key finding is that a pure spin current can be obtained in a cobaltocene dimer-based molecular junction, in which the spin-dependent Seebeck coefficient is larger than the charge Seebeck coefficient. These interesting results indicate that metallocene dimer-based molecular junctions have potential applications in future thermal spintronic and spin thermoelectric devices.

Journal ArticleDOI
TL;DR: In this paper, the authors showed that the increased configurational entropy obtained by continuous, multiple doping produces short-range disordered microstructures, which lead to an ultralow lattice thermal conductivity of ∼0.4 W m−1 K−1.
Abstract: Entropy engineering is one of the powerful approaches to suppress phase transitions. GeTe has a very high thermoelectric performance at relatively high temperatures, but the low structure symmetry and phase transition in the low temperature range limits its performance stability for power generation applications. Therefore, the optimized electrical transport properties of GeTe in a low temperature range are expected for improving the structural symmetry via suppressing phase transition. Herein, the phase transition temperature for GeTe was successfully decreased by introducing high entropy via continuously multiple doping; the phase transition temperature is correspondingly reduced from 660 K to 523 K. The Seebeck coefficient was enhanced by the improved structural symmetry through enhancing band effective mass while the carrier concentration is maintained in an optimum range. A record-high power factor of ∼23 μW cm−1 K−2 was obtained at 300 K in the highest entropy sample. We found that the increased configurational entropy obtained by continuous, multiple doping produces short-range disordered microstructures, which lead to an ultralow lattice thermal conductivity of ∼0.4 W m−1 K−1. Combining the record high power factor and low thermal conductivity, a maximum ZT value of ∼2.1 at 800 K was achieved for the highest entropy species Ge0.84In0.01Pb0.1Sb0.05Te0.997I0.003. This study provides an effective path to enhance thermoelectric performances via introducing entropy engineering.

Journal ArticleDOI
01 Aug 2019-Carbon
TL;DR: In this paper, the authors demonstrate that incorporating CNT in a conducting polymer PEDOT:PSS could facilitate the formation of stable and effective conductive channels, which provides an effective approach to optimize the TE parameters with simultaneously enhanced electrical conductivity and Seebeck coefficient against the initial organic TE materials.

Journal ArticleDOI
TL;DR: This work reports the excellent thermoelectric performance of tellurium nanofilms, with a room-temperature power factor of 31.7 μW/cm K2 and ZT value of 0.63, and finds that high work function metals such as palladium can form rare accumulation-type metal-to-semiconductor contacts to Te, which allows thermoeLECTrically generated carriers to be collected more efficiently.
Abstract: Tellurium (Te) is an intrinsically p-type-doped narrow-band gap semiconductor with an excellent electrical conductivity and low thermal conductivity. Bulk trigonal Te has been theoretically predicted and experimentally demonstrated to be an outstanding thermoelectric material with a high value of thermoelectric figure-of-merit ZT. In view of the recent progress in developing the synthesis route of 2D tellurium thin films as well as the growing trend of exploiting nanostructures as thermoelectric devices, here for the first time, we report the excellent thermoelectric performance of tellurium nanofilms, with a room-temperature power factor of 31.7 μW/cm K2 and ZT value of 0.63. To further enhance the efficiency of harvesting thermoelectric power in nanofilm devices, thermoelectrical current mapping was performed with a laser as a heating source, and we found that high work function metals such as palladium can form rare accumulation-type metal-to-semiconductor contacts to Te, which allows thermoelectricall...

Journal ArticleDOI
TL;DR: The temperature-induced valence band convergence of PbSe is accelerated by alloying with PbTe, and a highest peak ZT of 1.7 at 900 K and a record high average ZT for a P bSe-based system are achieved in the composition Pb0.85Te0.15.
Abstract: We show an example of hierarchically designing electronic bands of PbSe toward excellent thermoelectric performance. We find that alloying 15 mol % PbTe into PbSe causes a negligible change in the light and heavy valence band energy offsets (ΔEV) of PbSe around room temperature; however, with rising temperature it makes ΔEV decrease at a significantly higher rate than in PbSe. In other words, the temperature-induced valence band convergence of PbSe is accelerated by alloying with PbTe. On this basis, applying 3 mol % Cd substitution on the Pb sites of PbSe0.85Te0.15 decreases ΔEV and enhances the Seebeck coefficient at all temperatures. Excess Cd precipitates out as CdSe1–yTey, whose valence band aligns with that of the p-type Na-doped PbSe0.85Te0.15 matrix. This enables facile charge transport across the matrix/precipitate interfaces and retains the high carrier mobilities. Meanwhile, compared to PbSe the lattice thermal conductivity of PbSe0.85Te0.15 is significantly decreased to its amorphous limit of ...

Journal ArticleDOI
TL;DR: An optimally doped material having a thermoelectric figure of merit ZT > 1 at T > ~900 K, the first material with a technologically meaningful thermoelectedric energy conversion efficiency from a spin-caloritronic effect.
Abstract: Local thermal magnetization fluctuations in Li-doped MnTe are found to increase its thermopower α strongly at temperatures up to 900 K. Below the Neel temperature (TN ~ 307 K), MnTe is antiferromagnetic, and magnon drag contributes αmd to the thermopower, which scales as ~T3. Magnon drag persists into the paramagnetic state up to >3 × TN because of long-lived, short-range antiferromagnet-like fluctuations (paramagnons) shown by neutron spectroscopy to exist in the paramagnetic state. The paramagnon lifetime is longer than the charge carrier–magnon interaction time; its spin-spin spatial correlation length is larger than the free-carrier effective Bohr radius and de Broglie wavelength. Thus, to itinerant carriers, paramagnons look like magnons and give a paramagnon-drag thermopower. This contribution results in an optimally doped material having a thermoelectric figure of merit ZT > 1 at T > ~900 K, the first material with a technologically meaningful thermoelectric energy conversion efficiency from a spin-caloritronic effect.

Journal ArticleDOI
TL;DR: In this paper, single-walled carbon nanotube (SWCNT)/PEDOT:PSS coated Te nanorod (PC-Te) composite films were prepared by a simple vacuum assisted filtration method, and H2SO4 treatment was employed to improve the thermoelectric performance of the composite films.