scispace - formally typeset
Search or ask a question

Showing papers on "Transdifferentiation published in 2021"


Journal ArticleDOI
TL;DR: In this paper, the authors discuss the evolution of direct reprogramming from a transcription factor-based method to a small-molecule-driven approach, the recent progress in enhancing reprogrammed cell maturation, and the challenges associated with in vivo direct-reprogramming for translational applications.
Abstract: The reprogramming of somatic cells with defined factors, which converts cells from one lineage into cells of another, has greatly reshaped our traditional views on cell identity and cell fate determination. Direct reprogramming (also known as transdifferentiation) refers to cell fate conversion without transitioning through an intermediary pluripotent state. Given that the number of cell types that can be generated by direct reprogramming is rapidly increasing, it has become a promising strategy to produce functional cells for therapeutic purposes. This Review discusses the evolution of direct reprogramming from a transcription factor-based method to a small-molecule-driven approach, the recent progress in enhancing reprogrammed cell maturation, and the challenges associated with in vivo direct reprogramming for translational applications. It also describes our current understanding of the molecular mechanisms underlying direct reprogramming, including the role of transcription factors, epigenetic modifications, non-coding RNAs, and the function of metabolic reprogramming, and highlights novel insights gained from single-cell omics studies.

117 citations


Journal ArticleDOI
TL;DR: In this article, the detection of SARS-CoV-2 viral antigen in pancreatic beta cells in autopsy samples from individuals with COVID-19 was described, which indicated that multiple types of pancreatic islet cells were susceptible to SARS CoV2, eliciting a cellular stress response and the induction of chemokines.

93 citations


Journal ArticleDOI
TL;DR: In this paper, the authors proposed a mechanotransduction-based approach to prevent aggressive tumor behavior by ameliorating tumor mechanics, which can also foster mesenchymal-like transdifferentiation of cells.

46 citations


Journal ArticleDOI
TL;DR: The therapeutic effects of DZNep as epigenetic drug in liver fibrosis are associated with the regulation of EZH2 towards direct target genes encoding TGF-β1 pseudoreceptor BAMBI, anti-inflammatory cytokine IL10 and cell cycle regulators CDKN1A, Gadd45A and GADD45B, which are also regulated by JMJD3.
Abstract: Rationale: As the central hallmark of liver fibrosis, transdifferentiation of hepatic stellate cells (HSCs), the predominant contributor to fibrogenic hepatic myofibroblast responsible for extracellular matrix (ECM) deposition, is characterized with transcriptional and epigenetic remodeling. We aimed to characterize the roles of H3K27 methyltransferase EZH2 and demethylase JMJD3 and identify their effective pathways and novel target genes in HSCs activation and liver fibrosis. Methods: In primary HSCs, we analyzed effects of pharmacological inhibitions and genetic manipulations of EZH2 and JMJD3 on HSCs activation. In HSCs cell lines, we evaluated effects of EZH2 inhibition by DZNep on proliferation, cell cycling, senescence and apoptosis. In CCl4 and BDL murine models of liver fibrosis, we assessed in vivo effects of DZNep administration and Ezh2 silencing. We profiled rat primary HSCs transcriptomes with RNA-seq, screened the pathways and genes associated with DZNep treatment, analyzed EZH2 and JMJD3 regulation towards target genes by ChIP-qPCR. Results: EZH2 inhibition by DZNep resulted in retarded growth, lowered cell viability, cell cycle arrest in S and G2 phases, strengthened senescence, and enhanced apoptosis of HSCs, decreased hepatic collagen deposition and rescued the elevated serum ALT and AST activities of diseased mice, and downregulated cellular and hepatic expressions of H3K27me3, EZH2, α-SMA and COL1A. Ezh2 silencing by RNA interference in vitro and in vivo showed similar effects. JMJD3 inhibition by GSK-J4 and overexpression of wild-type but not mutant Jmjd3 enhanced or repressed HSCs activation respectively. EZH2 inhibition by DZNep transcriptionally inactivated TGF-β1 pathway, cell cycle pathways and vast ECM components in primary HSCs. EZH2 inhibition decreased H3K27me3 recruitment at target genes encoding TGF-β1 pseudoreceptor BAMBI, anti-inflammatory cytokine IL10 and cell cycle regulators CDKN1A, GADD45A and GADD45B, and increased their expressions, while Jmjd3 overexpression manifested alike effects. Conclusions: EZH2 and JMJD3 antagonistically modulate HSCs activation. The therapeutic effects of DZNep as epigenetic drug in liver fibrosis are associated with the regulation of EZH2 towards direct target genes encoding TGF-β1 pseudoreceptor BAMBI, anti-inflammatory cytokine IL10 and cell cycle regulators CDKN1A, GADD45A and GADD45B, which are also regulated by JMJD3. Our present study provides new mechanistic insight into the epigenetic modulation of EZH2 and JMJD3 in HSCs biology and hepatic fibrogenesis.

41 citations


Journal ArticleDOI
TL;DR: In this paper, the authors demonstrate that Yap/Taz play an important role in controlling MI-induced cardiac fibrosis by modulating fibroblasts proliferation, transdifferentiation into myofibroblast, and fibroinflammatory program.
Abstract: Aims Fibrosis is associated with all forms of adult cardiac diseases including myocardial infarction (MI). In response to MI, the heart undergoes ventricular remodeling that leads to fibrotic scar due to excessive deposition of extracellular matrix mostly produced by myofibroblasts. The structural and mechanical properties of the fibrotic scar are critical determinants of heart function. Yes-associated protein (Yap) and transcriptional coactivator with PDZ-binding motif (Taz) are the key effectors of the Hippo signaling pathway and are crucial for cardiomyocyte proliferation during cardiac development and regeneration. However, their role in cardiac fibroblasts, regulating post-MI fibrotic and fibroinflammatory response is not well established. Methods and results Using mouse model, we demonstrate that Yap/Taz are activated in cardiac fibroblasts after MI and fibroblasts-specific deletion of Yap/Taz using Col1a2Cre(ER)T mice reduces post-MI fibrotic and fibroinflammatory response and improves cardiac function. Consistently, Yap overexpression elevated post-MI fibrotic response. Gene expression profiling shows significant downregulation of several cytokines involved in post-MI cardiac remodeling. Furthermore, Yap/Taz directly regulate the promoter activity of pro-fibrotic cytokine interleukin-33 (IL33) in cardiac fibroblasts. Blocking of IL33 receptor ST2 using the neutralizing antibody abrogates the Yap-induced pro-fibrotic response in cardiac fibroblasts. We demonstrate that the altered fibroinflammatory program not only affects the nature of cardiac fibroblasts but also the polarization as well as infiltration of macrophages in the infarcted hearts. Furthermore, we demonstrate that Yap/Taz act downstream of both Wnt and TGFβ signaling pathways in regulating cardiac fibroblasts activation and fibroinflammatory response. Conclusions We demonstrate that Yap/Taz play an important role in controlling MI-induced cardiac fibrosis by modulating fibroblasts proliferation, transdifferentiation into myofibroblasts, and fibroinflammatory program. Translational perspective Cardiac fibroblasts are the most prevalent cell type in the heart and play an important role in regulating post-myocardial infarction (MI) cardiac fibrosis. Excessive cardiac fibrosis causes ventricular stiffness leading to systolic/diastolic cardiac dysfunction and heart failure. Therefore, understanding the molecular mechanism of cardiac fibroblasts activation will help to modulate the post-MI fibrotic response and improve cardiac function. In our study, we show that Yap/Taz play an important role in controlling MI-induced cardiac fibrosis by modulating fibroblasts proliferation, transdifferentiation into myofibroblasts, and fibroinflammatory program.

38 citations


Journal ArticleDOI
01 Mar 2021
TL;DR: Zhao et al. as mentioned in this paper used a suite of mouse models enabling dual-recombinase-mediated genetic tracing to simultaneously fate map insulin-positive and insulin-negative cells in the adult pancreas.
Abstract: It has been suggested that new beta cells can arise from specific populations of adult pancreatic progenitors or facultative stem cells. However, their existence remains controversial, and the conditions under which they would contribute to new beta-cell formation are not clear. Here, we use a suite of mouse models enabling dual-recombinase-mediated genetic tracing to simultaneously fate map insulin-positive and insulin-negative cells in the adult pancreas. We find that the insulin-negative cells, of both endocrine and exocrine origin, do not generate new beta cells in the adult pancreas during homeostasis, pregnancy or injury, including partial pancreatectomy, pancreatic duct ligation or beta-cell ablation with streptozotocin. However, non-beta cells can give rise to insulin-positive cells after extreme genetic ablation of beta cells, consistent with transdifferentiation. Together, our data indicate that pancreatic endocrine and exocrine progenitor cells do not contribute to new beta-cell formation in the adult mouse pancreas under physiological conditions. Zhao et al. use genetic lineage tracing to demonstrate that pancreatic endocrine and exocrine progenitor cells do not generate new beta cells, thus arguing against beta-cell neogenesis in the adult mouse pancreas.

27 citations


Journal ArticleDOI
TL;DR: It is estimated that converting a small percentage of existing white fat mass in obese subjects into active brite adipocytes could be sufficient to achieve meaningful benefits in metabolism, and novel browning agents have to be identified before adipocyte transdifferentiation can be realized as a safe and efficacious therapy.
Abstract: Brown and brite adipocytes contribute to energy expenditure through nonshivering thermogenesis. Though these cell types are thought to arise primarily from the de novo differentiation of precursor cells, their abundance is also controlled through the transdifferentiation of mature white adipocytes. Here, we review recent advances in our understanding of the regulation of white-to-brown transdifferentiation, as well as the conversion of brown and brite adipocytes to dormant, white-like fat cells. Converting mature white adipocytes into brite cells or reactivating dormant brown and brite adipocytes has emerged as a strategy to ameliorate human metabolic disorders. We analyze the evidence of learning from mice and how they translate to humans to ultimately scrutinize the relevance of this concept. Moreover, we estimate that converting a small percentage of existing white fat mass in obese subjects into active brite adipocytes could be sufficient to achieve meaningful benefits in metabolism. In conclusion, novel browning agents have to be identified before adipocyte transdifferentiation can be realized as a safe and efficacious therapy.

27 citations




Journal ArticleDOI
TL;DR: In this paper, the authors explored the epigenetic basis for hair cell regeneration in the mouse inner ear and its rapid loss during maturation by blocking Notch signaling during the perinatal period of plasticity, which rapidly eliminates epigenetic silencing and allows supporting cells to transdifferentiate into hair cells.

24 citations


Journal ArticleDOI
TL;DR: In this paper, the authors identify rare LNGFR(+) cells in human fetal and regenerative bone marrow that co-express endothelial and stromal markers and reveal the generation of tissue-forming BMSCs from mouse and human endothelial cells and may be instructive for approaches to human tissue regeneration.

Journal ArticleDOI
TL;DR: In this article, the authors examined how DMRT1 reprograms granulosa cells to Sertoli-like cells in vivo and in culture, and found that DMRTs can act as a pioneer factor to open chromatin and allow binding of SOX9, which then cooperates with DMTs to reprogram sexual cell fate.
Abstract: Mammalian sexual development commences when fetal bipotential progenitor cells adopt male Sertoli (in XY) or female granulosa (in XX) gonadal cell fates. Differentiation of these cells involves extensive divergence in chromatin state and gene expression, reflecting distinct roles in sexual differentiation and gametogenesis. Surprisingly, differentiated gonadal cell fates require active maintenance through postnatal life to prevent sexual transdifferentiation and female cell fate can be reprogrammed by ectopic expression of the sex regulator DMRT1. Here we examine how DMRT1 reprograms granulosa cells to Sertoli-like cells in vivo and in culture. We define postnatal sex-biased gene expression programs and identify three-dimensional chromatin contacts and differentially accessible chromatin regions (DARs) associated with differentially expressed genes. Using a conditional transgene we find DMRT1 only partially reprograms the ovarian transcriptome in the absence of SOX9 and its paralog SOX8, indicating that these factors functionally cooperate with DMRT1. ATAC-seq and ChIP-seq show that DMRT1 induces formation of many DARs that it binds with SOX9, and DMRT1 is required for binding of SOX9 at most of these. We suggest that DMRT1 can act as a pioneer factor to open chromatin and allow binding of SOX9, which then cooperates with DMRT1 to reprogram sexual cell fate.

Journal ArticleDOI
20 Aug 2021-Cells
TL;DR: The human erythropoietin (EPO) is an N-linked glycoprotein consisting of 166 aa that is produced in the kidney during the adult life and acts both as a peptide hormone and hematopoietic growth factor (HGF), stimulating bone marrow erythoiesis as discussed by the authors.
Abstract: Human erythropoietin (EPO) is an N-linked glycoprotein consisting of 166 aa that is produced in the kidney during the adult life and acts both as a peptide hormone and hematopoietic growth factor (HGF), stimulating bone marrow erythropoiesis. EPO production is activated by hypoxia and is regulated via an oxygen-sensitive feedback loop. EPO acts via its homodimeric erythropoietin receptor (EPO-R) that increases cell survival and drives the terminal erythroid maturation of progenitors BFU-Es and CFU-Es to billions of mature RBCs. This pathway involves the activation of multiple erythroid transcription factors, such as GATA1, FOG1, TAL-1, EKLF and BCL11A, and leads to the overexpression of genes encoding enzymes involved in heme biosynthesis and the production of hemoglobin. The detection of a heterodimeric complex of EPO-R (consisting of one EPO-R chain and the CSF2RB β-chain, CD131) in several tissues (brain, heart, skeletal muscle) explains the EPO pleotropic action as a protection factor for several cells, including the multipotent MSCs as well as cells modulating the innate and adaptive immunity arms. EPO induces the osteogenic and endothelial transdifferentiation of the multipotent MSCs via the activation of EPO-R signaling pathways, leading to bone remodeling, induction of angiogenesis and secretion of a large number of trophic factors (secretome). These diversely unique properties of EPO, taken together with its clinical use to treat anemias associated with chronic renal failure and other blood disorders, make it a valuable biologic agent in regenerative medicine for the treatment/cure of tissue de-regeneration disorders.

Journal ArticleDOI
15 Sep 2021-Nature
TL;DR: In this paper, the authors identify a rare TERT-positive subpopulation of pancreatic acinar cells dispersed throughout the exocrine compartment during homeostasis, which renew the pancreas by forming expanding clones.
Abstract: Pancreatic ductal adenocarcinoma (PDAC) is one of the leading causes of cancer deaths worldwide1. Studies in human tissues and in mouse models have suggested that for many cancers, stem cells sustain early mutations driving tumour development2,3. For the pancreas, however, mechanisms underlying cellular renewal and initiation of PDAC remain unresolved. Here, using lineage tracing from the endogenous telomerase reverse transcriptase (Tert) locus, we identify a rare TERT-positive subpopulation of pancreatic acinar cells dispersed throughout the exocrine compartment. During homeostasis, these TERThigh acinar cells renew the pancreas by forming expanding clones of acinar cells, whereas randomly marked acinar cells do not form these clones. Specific expression of mutant Kras in TERThigh acinar cells accelerates acinar clone formation and causes transdifferentiation to ductal pre-invasive pancreatic intraepithelial neoplasms by upregulating Ras–MAPK signalling and activating the downstream kinase ERK (phospho-ERK). In resected human pancreatic neoplasms, we find that foci of phospho-ERK-positive acinar cells are common and frequently contain activating KRAS mutations, suggesting that these acinar regions represent an early cancer precursor lesion. These data support a model in which rare TERThigh acinar cells may sustain KRAS mutations, driving acinar cell expansion and creating a field of aberrant cells initiating pancreatic tumorigenesis. A rare population of acinar cells expressing telomerase reverse transcriptase renew the acinar cell compartment during homeostasis, and are potential sources of premalignant cells in pancreatic carcinogenesis.

Journal ArticleDOI
TL;DR: In this paper, the authors demonstrated that lymphangiogenesis occurred in a renal fibrosis model and was positively correlated with the degree of fibrosis and macrophage infiltration, and the induction of autophagy in macrophages by rapamycin decreased M1 macocyte polarization and differentiation into LECs.
Abstract: Inflammation plays a crucial role in the occurrence and development of renal fibrosis, which ultimately results in end-stage renal disease (ESRD). There is new focus on lymphangiogenesis in the field of inflammation. Recent studies have revealed the association between lymphangiogenesis and renal fibrosis, but the source of lymphatic endothelial cells (LECs) is not clear. It has also been reported that macrophages are involved in lymphangiogenesis through direct and indirect mechanisms in other tissues. We hypothesized that there was a close relationship between macrophages and lymphatic endothelial progenitor cells in renal fibrosis. In this study, we demonstrated that lymphangiogenesis occurred in a renal fibrosis model and was positively correlated with the degree of fibrosis and macrophage infiltration. Compared to resting (M0) macrophages and alternatively activated (M2) macrophages, classically activated (M1) macrophages predominantly transdifferentiated into LECs in vivo and in vitro. VEGF-C further increased M1 macrophage polarization and transdifferentiation into LECs by activating VEGFR3. It was suggested that VEGF-C/VEGFR3 pathway activation downregulated macrophage autophagy and subsequently regulated macrophage phenotype. The induction of autophagy in macrophages by rapamycin decreased M1 macrophage polarization and differentiation into LECs. These results suggested that M1 macrophages promoted lymphangiogenesis and contributed to newly formed lymphatic vessels in the renal fibrosis microenvironment, and VEGF-C/VEGFR3 signaling promoted macrophage M1 polarization by suppressing macrophage autophagy and then increased the transdifferentiation of M1 macrophages into LECs.

Journal ArticleDOI
TL;DR: In this article, exosomes derived from cartilage endplate (CEP) cells (CESC-Exos) were extracted and identified by ultra-high-speed centrifugation and transmission electron microscopy.
Abstract: Stem cells derived from cartilage endplate (CEP) cells (CESCs) repair intervertebral disc (IVD) injury; however, the mechanism remains unclear. Here, we evaluated whether CESCs could transdifferentiate into nucleus pulposus cells (NPCs) via autocrine exosomes and subsequently inhibit IVD degeneration. Exosomes derived from CESCs (CESC-Exos) were extracted and identified by ultra-high-speed centrifugation and transmission electron microscopy. The effects of exosomes on the invasion, migration, and differentiation of CESCs were assessed. The exosome-activating hypoxia-inducible factor (HIF)-1α/Wnt pathway was investigated using lenti-HIF-1α and Wnt agonists/inhibitors in cells and gene ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis in normal and degenerated human CEP tissue. The effects of GATA binding protein 4 (GATA4) on transforming growth factor (TGF)-β expression and on the invasion, migration, and transdifferentiation of CESCs were investigated using lenti-GATA4, TGF-β agonists, and inhibitors. Additionally, IVD repair was investigated by injecting CESCs overexpressing GATA4 into rats. The results indicated that CESC-Exos promoted the invasion, migration, and differentiation of CESCs by autocrine exosomes via the HIF-1α/Wnt pathway. Additionally, increased HIF-1α enhanced the activation of Wnt signaling and activated GATA4 expression. GATA4 effectively promoted TGF-β secretion and enhanced the invasion, migration, and transdifferentiation of CESCs into NPCs, resulting in promotion of rat IVD repair. CESCs were also converted into NPCs as endplate degeneration progressed in human samples. Overall, we found that CESC-Exos activated HIF-1α/Wnt signaling via autocrine mechanisms to increase the expression of GATA4 and TGF-β1, thereby promoting the migration of CESCs into the IVD and the transformation of CESCs into NPCs and inhibiting IVDD.

Journal ArticleDOI
TL;DR: In this article, the Notch2-dependent fate decision after splenic influx of immature transitional B cells was demonstrated to drive the lineage conversion from mature FoB cells into bona fide marginal zone B cells.
Abstract: Follicular B (FoB) and marginal zone B (MZB) cells are functionally and spatially distinct mature B cell populations in the spleen, originating from a Notch2-dependent fate decision after splenic influx of immature transitional B cells. In the B cell follicle, a Notch2-signal is provided by DLL-1-expressing fibroblasts. However, it is unclear whether FoB cells, which are in close contact with these DLL-1 expressing fibroblasts, can also differentiate to MZB cells if they receive a Notch2-signal. Here, we show induced Notch2IC-expression in FoB cells re-programs mature FoB cells into bona fide MZB cells as is evident from the surface phenotype, localization, immunological function and transcriptome of these cells. Furthermore, the lineage conversion from FoB to MZB cells occurs in immunocompetent wildtype mice. These findings demonstrate plasticity between mature FoB and MZB cells that can be driven by a singular signaling event, the activation of Notch2. Notch signalling is central to marginal zone B cell development, but it is unclear what path this development takes in vivo. Here the authors use a mouse that lacks these cells to show that transgenic induction of Notch2 is sufficient for development of marginal zone B cells via transdifferentiation from follicular B cells and that this mechanism can occur in wildtype mice.

Journal ArticleDOI
TL;DR: In this article, the authors investigated the role of farnesoid X receptor (FXR) in liver regeneration after extreme hepatocyte loss through transdifferentiation of biliary epithelial cells (BECs), which includes dedifferentiation of BECs into bipotential progenitor cells (BPPCs) and subsequent redifferentiation into nascent hepatocytes and BEC.

Journal ArticleDOI
TL;DR: In this paper, the authors identify the EGFR-related mechanisms that govern the capacity of glioma cells to transdifferentiate into pericytes, regulating the vascular and immune phenotypes of the tumors.
Abstract: The extraordinary plasticity of glioma cells allows them to contribute to different cellular compartments in tumor vessels, reinforcing the vascular architecture. It was recently revealed that targeting glioma-derived pericytes, which represent a big percentage of the mural cell population in aggressive tumors, increases the permeability of the vessels and improves the efficiency of chemotherapy. However, the molecular determinants of this transdifferentiation process have not been elucidated. Here we show that mutations in EGFR stimulate the capacity of glioma cells to function as pericytes in a BMX- (bone marrow and X-linked) and SOX9-dependent manner. Subsequent activation of platelet-derived growth factor receptor beta in the vessel walls of EGFR-mutant gliomas stabilized the vasculature and facilitated the recruitment of immune cells. These changes in the tumor microenvironment conferred a growth advantage to the tumors but also rendered them sensitive to pericyte-targeting molecules such as ibrutinib or sunitinib. In the absence of EGFR mutations, high-grade gliomas were enriched in blood vessels, but showed a highly disrupted blood-brain barrier due to the decreased BMX/SOX9 activation and pericyte coverage, which led to poor oxygenation, necrosis, and hypoxia. Overall, these findings identify EGFR mutations as key regulators of the glioma-to-pericyte transdifferentiation, highlighting the intricate relationship between the tumor cells and their vascular and immune milieu. Our results lay the foundations for a vascular-dependent stratification of gliomas and suggest different therapeutic vulnerabilities determined by the genetic status of EGFR. SIGNIFICANCE: This study identifies the EGFR-related mechanisms that govern the capacity of glioma cells to transdifferentiate into pericytes, regulating the vascular and immune phenotypes of the tumors. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/81/8/2142/F1.large.jpg.

Journal ArticleDOI
TL;DR: In this paper, the authors focus on the mechanisms and molecular pathways underlying the initiation and onset of metabolic disorders following hepatic stellate cells activation, as well as on molecular therapeutic targets, which could limit their fibrogenic transdifferentiation and therefore improve the liver condition in the course of metabolic imbalance.

Journal ArticleDOI
TL;DR: In this paper, the role of microRNAs in vascular calcification was examined and miR-223-3p was identified as a candidate miRNA in calcified mouse aortas.

Journal ArticleDOI
TL;DR: Exosomal miR-107 produced by pulmonary vascular ECs may alleviate pericyte-induced fibrosis by inhibiting a signaling pathway involving HIF-1α/Notch1/PDGFRβ/YAP1/Twist1.
Abstract: This work reveals a novel mechanism by which pulmonary vascular endothelial cells, via regulating the transdifferentiation of microvascular pericytes into myofibroblasts, contribute to the pathogen...

Journal ArticleDOI
TL;DR: In this paper, the authors highlight the potential role of the canonical Wnt signaling pathway within vascular calcification based on several studies and further discuss the Wnt ligands that specifically aid in vascular smooth muscle transdifferentiation.
Abstract: Cardiovascular disease is a worldwide epidemic and considered the leading cause of death globally. Due to its high mortality rates, it is imperative to study the underlying causes and mechanisms of the disease. Vascular calcification, or the buildup of hydroxyapatite within the arterial wall, is one of the greatest contributors to cardiovascular disease. Medial vascular calcification is a predictor of cardiovascular events such as, but not limited to, hypertension, stiffness, and even heart failure. Vascular smooth muscle cells (VSMCs), which line the arterial wall and function to maintain blood pressure, are hypothesized to undergo a phenotypic switch into bone-forming cells during calcification, mimicking the manner by which mesenchymal stem cells differentiate into osteoblast cells throughout osteogenesis. RunX2, a transcription factor necessary for osteoblast differentiation and a target gene of the Wnt signaling pathway, has also shown to be upregulated when calcification is present, implicating that the Wnt cascade may be a key player in the transdifferentiation of VSMCs. It is important to note that the phenotypic switch of VSMCs from a healthy, contractile state to a proliferative, synthetic state is necessary in response to the vascular injury surrounding calcification. The lingering question, however, is if VSMCs acquire this synthetic phenotype through the Wnt pathway, how and why does this signaling occur? This review seeks to highlight the potential role of the canonical Wnt signaling pathway within vascular calcification based on several studies and further discuss the Wnt ligands that specifically aid in VSMC transdifferentiation.

Journal ArticleDOI
TL;DR: Extracellular vesicles (EV) function as messengers between endothelial cells (EC) and vascular smooth muscle cells (VSMC) in chronic kidney disease (CKD).
Abstract: Extracellular vesicles (EV) function as messengers between endothelial cells (EC) and vascular smooth muscle cells (VSMC). Since chronic kidney disease (CKD) increases the risk for vascular calcifications, we investigated whether EV derived from uraemic milieu-stimulated EC and derived from uraemic rats impact the osteogenic transdifferentiation/calcification of VSMC. For that purpose, human EC were treated with urea and indoxyl sulphate or left untreated. Experimental uraemia in rats was induced by adenine feeding. 'Uraemic' and control EV (EVUR ; EVCTRL ) were isolated from supernatants and plasma by using an exosome isolation reagent. Rat VSMC were treated with a pro-calcifying medium (CM) with or without EV supplementation. Gene expressions, miRNA contents and protein expressions were determined by qPCR and Western blots, respectively. Calcifications were determined by colorimetric assays. Delivery of miRNA inhibitors/mimics to EV and siRNA to VSMC was achieved via transfection. EVCTRL and EVUR differed in size and miRNA contents. Contrary to EVCTRL , EC- and plasma-derived EVUR significantly increased the pro-calcifying effects of CM, including altered gene expressions of osterix, runx2, osteocalcin and SM22α. Further, EVUR enhanced the protein expression of the phosphate transporter PiT-1 in VSMC and induced a phosphorylation of AKT and ERK. Knock down of PiT-1 and individual inhibition of AKT and ERK signalling in VSMC blocked the pro-calcifying effects of EVUR . Similar effects were achieved by inhibition of miR-221/-222 and mimicking of miR-143/-145 in EVUR . In conclusion, EVUR might represent an additional puzzle piece of the complex pathophysiology of vascular calcifications in CKD.

Journal ArticleDOI
TL;DR: This review reexamines conventional fibroblast transdifferentiation paradigms with a dynamic state space lens, which could enable a more complex understanding of how fibroblasts state dynamics alters fibrotic remodeling of the heart.

Journal ArticleDOI
TL;DR: The available data of the past years on the plasmatocyte-lamellocyte transition are summarized and an attempt to harmonize them with transcriptome-based blood cell clustering to better understand the underlying mechanisms of transdifferentiation in Drosophila, and in general.

Journal ArticleDOI
TL;DR: In this paper, the authors discuss how endothelial cells become specified during development as arterial, venous, or lymphatic endothelium cells or convert into hematopoietic stem and progenitor cells or cardiac valve cells.
Abstract: Endothelial cells display an extraordinary plasticity both during development and throughout adult life. During early development, endothelial cells assume arterial, venous, or lymphatic identity, while selected endothelial cells undergo additional fate changes to become hematopoietic progenitor, cardiac valve, and other cell types. Adult endothelial cells are some of the longest-lived cells in the body and their participation as stable components of the vascular wall is critical for the proper function of both the circulatory and lymphatic systems, yet these cells also display a remarkable capacity to undergo changes in their differentiated identity during injury, disease, and even normal physiological changes in the vasculature. Here, we discuss how endothelial cells become specified during development as arterial, venous, or lymphatic endothelial cells or convert into hematopoietic stem and progenitor cells or cardiac valve cells. We compare findings from in vitro and in vivo studies with a focus on the zebrafish as a valuable model for exploring the signaling pathways and environmental cues that drive these transitions. We also discuss how endothelial plasticity can aid in revascularization and repair of tissue after damage- but may have detrimental consequences under disease conditions. By better understanding endothelial plasticity and the mechanisms underlying endothelial fate transitions, we can begin to explore new therapeutic avenues.

Journal ArticleDOI
TL;DR: In this article, the authors found that the activation of the Hedgehog pathway in esophageal cells modifies their differentiation status in vivo, and a subset of these cells undergoes full squamous-to-columnar conversion and expresses selected intestinal markers.

Journal ArticleDOI
TL;DR: In this article, the authors provided the first comprehensive molecular characterization of LUSC transdifferentiation, suggesting putative drivers and potential therapeutic targets to constrain or prevent lineage plasticity.
Abstract: BACKGROUND Lineage plasticity, the ability to transdifferentiate among distinct phenotypic identities, facilitates therapeutic resistance in cancer. In lung adenocarcinomas (LUADs), this phenomenon includes small cell and squamous cell (LUSC) histologic transformation in the context of acquired resistance to targeted inhibition of driver mutations. LUAD-to-LUSC transdifferentiation, occurring in up to 9% of EGFR-mutant patients relapsed on osimertinib, is associated with notably poor prognosis. We hypothesized that multi-parameter profiling of the components of mixed histology (LUAD/LUSC) tumors could provide insight into factors licensing lineage plasticity between these histologies. METHODS We performed genomic, epigenomics, transcriptomics and protein analyses of microdissected LUAD and LUSC components from mixed histology tumors, pre-/post-transformation tumors and reference non-transformed LUAD and LUSC samples. We validated our findings through genetic manipulation of preclinical models in vitro and in vivo and performed patient-derived xenograft (PDX) treatments to validate potential therapeutic targets in a LUAD PDX model acquiring LUSC features after osimertinib treatment. RESULTS Our data suggest that LUSC transdifferentiation is primarily driven by transcriptional reprogramming rather than mutational events. We observed consistent relative upregulation of PI3K/AKT, MYC and PRC2 pathway genes. Concurrent activation of PI3K/AKT and MYC induced squamous features in EGFR-mutant LUAD preclinical models. Pharmacologic inhibition of EZH1/2 in combination with osimertinib prevented relapse with squamous-features in an EGFR-mutant patient-derived xenograft model, and inhibition of EZH1/2 or PI3K/AKT signaling re-sensitized resistant squamous-like tumors to osimertinib. CONCLUSIONS Our findings provide the first comprehensive molecular characterization of LUSC transdifferentiation, suggesting putative drivers and potential therapeutic targets to constrain or prevent lineage plasticity.

Journal ArticleDOI
TL;DR: In this paper, the authors describe essential roles for the transcriptional regulators YAP/TAZ in maintaining lung epithelial homeostasis, reporting that conditional deletion of Yap and Wwtr1/Taz in the lung epithelium of adult mice results in severe defects, including alveolar disorganization and the development of airway mucin hypersecretion.