scispace - formally typeset
Search or ask a question

Showing papers on "Tumor suppressor gene published in 2000"


Journal Article
TL;DR: It is demonstrated that in human prostate cancer cells, basal-, growth factor- and mitogen-induced expression of hypoxia-inducible factor 1 (HIF-1) alpha, the regulated subunit of the transcription factor Hif-1, is blocked by LY294002 and rapamycin, inhibitors of PI3K and FRAP, respectively.
Abstract: Dysregulated signal transduction from receptor tyrosine kinases to phosphatidylinositol 3-kinase (PI3K), AKT (protein kinase B), and its effector FKBP-rapamycin-associated protein (FRAP) occurs via autocrine stimulation or inactivation of the tumor suppressor PTEN in many cancers. Here we demonstrate that in human prostate cancer cells, basal-, growth factor-, and mitogen-induced expression of hypoxia-inducible factor 1 (HIF-1) alpha, the regulated subunit of the transcription factor HIF-1, is blocked by LY294002 and rapamycin, inhibitors of PI3K and FRAP, respectively. HIF-1-dependent gene transcription is blocked by dominant-negative AKT or PI3K and by wild-type PTEN, whereas transcription is stimulated by constitutively active AKT or dominant-negative PTEN. LY294002 and rapamycin also inhibit growth factor- and mitogen-induced secretion of vascular endothelial growth factor, the product of a known HIF-1 target gene, thus linking the PI3K/PTEN/AKT/FRAP pathway, HIF-1, and tumor angiogenesis. These data indicate that pharmacological agents that target PI3K, AKT, or FRAP in tumor cells inhibit HIF-1alpha expression and that such inhibition may contribute to therapeutic efficacy.

1,487 citations


Journal Article
TL;DR: A new class of HIF-1-responsive gene is defined, the activation of which has implications for the understanding of hypoxic tumor metabolism and which may provide endogenous markers for tumor hypoxia.
Abstract: The transcriptional complex hypoxia-inducible factor-1 (HIF-1) has emerged as an important mediator of gene expression patterns in tumors, although the range of responding genes is still incompletely defined. Here we show that the tumor-associated carbonic anhydrases (CAs) are tightly regulated by this system. Both CA9 and CA12 were strongly induced by hypoxia in a range of tumor cell lines. In renal carcinoma cells that are defective for the von Hippel-Lindau (VHL) tumor suppressor, up-regulation of these CAs is associated with loss of regulation by hypoxia, consistent with the critical function of pVHL in the regulation of HIF-1. Further studies of CA9 defined a HIF-1-dependent hypoxia response element in the minimal promoter and demonstrated that tight regulation by the HIF/pVHL system was reflected in the pattern of CA IX expression within tumors. Generalized up-regulation of CA IX in VHL-associated renal cell carcinoma contrasted with focal perinecrotic expression in a variety of non-VHL-associated tumors. In comparison with vascular endothelial growth factor mRNA, expression of CA IX demonstrated a similar, although more tightly circumscribed, pattern of expression around regions of necrosis and showed substantial although incomplete overlap with activation of the hypoxia marker pimonidazole. These studies define a new class of HIF-1-responsive gene, the activation of which has implications for the understanding of hypoxic tumor metabolism and which may provide endogenous markers for tumor hypoxia.

1,253 citations


Journal ArticleDOI
TL;DR: In this article, the role of hypermethylation of the BRCA1 gene's promoter region was analyzed in the presence of heterozygosity (LOH) and loss of one copy of the gene in tumors.
Abstract: Background: Inherited mutations in the BRCA1 gene may be responsible for almost half of inherited breast carcinomas. However, somatic (acquired) mutations in BRCA1 have not been reported, despite frequent loss of heterozygosity (LOH or loss of one copy of the gene) at the BRCA1 locus and loss of BRCA1 protein in tumors. To address whether BRCA1 may be inactivated by pathways other than mutations in sporadic tumors, we analyzed the role of hypermethylation of the gene's promoter region. Methods: Methylation patterns in the BRCA1 promoter were assessed in breast cancer cell lines, xenografts, and 215 primary breast and ovarian carcinomas by methylation-specific polymerase chain reaction (PCR). BRCA1 RNA expression was determined in cell lines and seven xenografts by reverse transcription-PCR. P values are two-sided. Results: The BRCA1 promoter was found to be unmethylated in all normal tissues and cancer cell lines tested. However, BRCA1 promoter hypermethylation was present in two breast cancer xenografts, both of which had loss of the BRCA1 transcript. BRCA1 promoter hypermethylation was present in 11 (13%) of 84 unselected primary breast carcinomas. BRCA1 methylation was strikingly associated with the medullary (67% methylated; P = .0002 versus ductal) and mucinous (55% methylated; P = .0033 versus ductal) subtypes, which are overrepresented in BRCA1 families. In a second series of 66 ductal breast tumors informative for LOH, nine (20%) of 45 tumors with LOH had BRCA1 hypermethylation, while one (5%) of 21 without LOH was methylated (P = .15). In ovarian neoplasms, BRCA1 methylation was found only in tumors with LOH, four (31%) of 13 versus none of 18 without LOH (P = .02). The BRCA1 promoter was unmethylated in other tumor types. Conclusion: Silencing of the BRCA1 gene by promoter hypermethylation occurs in primary breast and ovarian carcinomas, especially in the presence of LOH and in specific histopathologic subgroups. These findings support a role for this tumor suppressor gene in sporadic breast and ovarian tumorigenesis.

1,177 citations


Journal ArticleDOI
TL;DR: Cl cloning and characterization of a human RAS effector homologue (RASSF1) located in the 120-kb region of minimal homozygous deletion indicate a potential role for RASSF 1A as a lung tumour suppressor gene.
Abstract: Allelic loss at the short arm of chromosome 3 is one of the most common and earliest events in the pathogenesis of lung cancer, and is observed in more than 90% of small-cell lung cancers (SCLCs) and in 50-80% of non-small-cell lung cancers (NSCLCs). Frequent and early loss of heterozygosity and the presence of homozygous deletions suggested a critical role of the region 3p21.3 in tumorigenesis and a region of common homozygous deletion in 3p21.3 was narrowed to 120 kb (ref. 5). Several putative tumour-suppressor genes located at 3p21 have been characterized, but none of these genes appear to be altered in lung cancer. Here we describe the cloning and characterization of a human RAS effector homologue (RASSF1) located in the 120-kb region of minimal homozygous deletion. We identified three transcripts, A, B and C, derived from alternative splicing and promoter usage. The major transcripts A and C were expressed in all normal tissues. Transcript A was missing in all SCLC cell lines analysed and in several other cancer cell lines. Loss of expression was correlated with methylation of the CpG-island promoter sequence of RASSF1A. The promoter was highly methylated in 24 of 60 (40%) primary lung tumours, and 4 of 41 tumours analysed carried missense mutations. Re-expression of transcript A in lung carcinoma cells reduced colony formation, suppressed anchorage-independent growth and inhibited tumour formation in nude mice. These characteristics indicate a potential role for RASSF1A as a lung tumour suppressor gene.

1,062 citations


Journal ArticleDOI
02 Mar 2000-Nature
TL;DR: It is shown that mice functionally deficient for all p73 isoforms exhibit profound defects, including hippocampal dysgenesis, hydrocephalus, chronic infections and inflammation, as well as abnormalities in pheromone sensory pathways, and there is a marked divergence in the physiological functions of the p53 family members.
Abstract: p73 (ref. 1) has high homology with the tumour suppressor p53 (refs 2,3,4), as well as with p63, a gene implicated in the maintenance of epithelial stem cells5,6,7. Despite the localization of the p73 gene to chromosome 1p36.3, a region of frequent aberration in a wide range of human cancers1, and the ability of p73 to transactivate p53 target genes1, it is unclear whether p73 functions as a tumour suppressor. Here we show that mice functionally deficient for all p73 isoforms exhibit profound defects, including hippocampal dysgenesis, hydrocephalus, chronic infections and inflammation, as well as abnormalities in pheromone sensory pathways. In contrast to p53-deficient mice, however, those lacking p73 show no increased susceptibility to spontaneous tumorigenesis. We report the mechanistic basis of the hippocampal dysgenesis and the loss of pheromone responses, and show that new, potentially dominant-negative, p73 variants are the predominant expression products of this gene in developing and adult tissues. Our data suggest that there is a marked divergence in the physiological functions of the p53 family members, and reveal unique roles for p73 in neurogenesis, sensory pathways and homeostatic control.

1,019 citations


Journal ArticleDOI
13 Jul 2000-Nature
TL;DR: It is found that oncogenic Ras upregulates PML expression, and overexpression of PML induces senescence in a p53-dependent manner, and integrity of the PML bodies is required for p53 acetylation and senescences upon oncogene expression.
Abstract: The tumour suppressor p53 induces cellular senescence in response to oncogenic signals p53 activity is modulated by protein stability and post-translational modification, including phosphorylation and acetylation The mechanism of p53 activation by oncogenes remains largely unknown Here we report that the tumour suppressor PML regulates the p53 response to oncogenic signals We found that oncogenic Ras upregulates PML expression, and overexpression of PML induces senescence in a p53-dependent manner p53 is acetylated at lysine 382 upon Ras expression, an event that is essential for its biological function Ras induces re-localization of p53 and the CBP acetyltransferase within the PML nuclear bodies and induces the formation of a trimeric p53-PML-CBP complex Lastly, Ras-induced p53 acetylation, p53-CBP complex stabilization and senescence are lost in PML-/- fibroblasts Our data establish a link between PML and p53 and indicate that integrity of the PML bodies is required for p53 acetylation and senescence upon oncogene expression

844 citations


Journal ArticleDOI
20 Apr 2000-Nature
TL;DR: It is concluded that inhibition of NF-κB in tumours that retain wild-type p53 may diminish, rather than augment, a therapeutic response.
Abstract: The tumour suppressor p53 inhibits cell growth through activation of cell-cycle arrest and apoptosis1, and most cancers have either mutation within the p53 gene or defects in the ability to induce p53. Activation or re-introduction of p53 induces apoptosis in many tumour cells and may provide effective cancer therapy2. One of the key proteins that modulates the apoptotic response is NF-κB, a transcription factor that can protect or contribute to apoptosis3. Here we show that induction of p53 causes an activation of NF-κB that correlates with the ability of p53 to induce apoptosis. Inhibition or loss of NF-κB activity abrogated p53-induced apoptosis, indicating that NF-κB is essential in p53-mediated cell death. Activation of NF-κB by p53 was distinct from that mediated by tumour-necrosis factor-α and involved MEK1 and the activation of pp90rsk. Inhibition of MEK1 blocked activation of NF-κB by p53 and completely abrogated p53-induced cell death. We conclude that inhibition of NF-κB in tumours that retain wild-type p53 may diminish, rather than augment, a therapeutic response.

721 citations


Journal Article
TL;DR: Understanding the structure and functions of oncogenic p53 mutants may lead to more potent reactivation modalities or to the ability to eliminate mutant p53 gain of function.
Abstract: The p53 guardian of the genome is inactivated in the majority of cancers, mostly through missense mutations that cause single residue changes in the DNA binding core domain of the protein. Not only do such mutations result in the abrogation of wild-type p53 activity, but the expressed p53 mutant proteins also tend to gain oncogenic functions, such as interference with wild-type p53-independent apoptosis. Because p53 mutants are highly expressed in cancer cells and not in normal cells, their reactivation to wild-type p53 function may eliminate the cancer by apoptosis or another p53-dependent mechanism. Several studies that embarked on this quest for reactivation have succeeded in restoring wildtype p53 activity to several p53 mutants. However, mutants with more extensive structural changes in the DNA binding core domain may be refractory to reactivation to the wild-type p53 phenotype. Therefore, understanding the structure and functions of oncogenic p53 mutants may lead to more potent reactivation modalities or to the ability to eliminate mutant p53 gain of function.

703 citations


Journal ArticleDOI
TL;DR: Development of methods for production of the purified recombinant VHL complex are reported and direct biochemical evidence that it can function with an E1 ubiquitin-activating enzyme and E2 ubiqu itin-conjugating enzyme to activate HIF1alpha ubiquitination in vitro is presented.
Abstract: Mutations in the VHL tumor suppressor gene result in constitutive expression of many hypoxia-inducible genes, at least in part because of increases in the cellular level of hypoxia-inducible transcription factor HIF1alpha, which in normal cells is rapidly ubiquitinated and degraded by the proteasome under normoxic conditions. The recent observation that the VHL protein is a subunit of an Skp1-Cul1/Cdc53-F-box (SCF)-like E3 ubiquitin ligase raised the possibility that VHL may be directly responsible for regulating cellular levels of HIF1alpha by targeting it for ubiquitination and proteolysis. In this report, we test this hypothesis directly. We report development of methods for production of the purified recombinant VHL complex and present direct biochemical evidence that it can function with an E1 ubiquitin-activating enzyme and E2 ubiquitin-conjugating enzyme to activate HIF1alpha ubiquitination in vitro. Our findings provide new insight into the function of the VHL tumor suppressor protein, and they provide a foundation for future investigations of the mechanisms underlying VHL regulation of oxygen-dependent gene expression.

646 citations


Journal ArticleDOI
23 Nov 2000-Nature
TL;DR: What is known of BRCA gene function is analyzed and some unanswered questions in the field are highlighted to highlight the need to understand more fully the functions and responsibilities of this gene.
Abstract: Hereditary breast and ovarian cancer syndromes can be caused by loss-of-function germline mutations in one of two tumour-suppressor genes, BRCA1 and BRCA2 (ref 1) Each gene product interacts with recombination/DNA repair proteins in pathways that participate in preserving intact chromosome structure However, it is unclear to what extent such functions specifically suppress breast and ovarian cancer Here we analyse what is known of BRCA gene function and highlight some unanswered questions in the field

635 citations


Journal ArticleDOI
TL;DR: The data show that EP300 is mutated in epithelial cancers and provide the first evidence that it behaves as a classical tumour-suppressor gene.
Abstract: The EP300 protein is a histone acetyltransferase that regulates transcription via chromatin remodelling and is important in the processes of cell proliferation and differentiation. EP300 acetylation of TP53 in response to DNA damage regulates its DNA-binding and transcription functions. A role for EP300 in cancer has been implied by the fact that it is targeted by viral oncoproteins, it is fused to MLL in Leukaemia and two missense sequence alterations in EP300 were identified in epithelial malignancies. Nevertheless, direct demonstration of the role of EP300 in tumorigenesis by inactivating mutations in human cancers has been lacking. Here we describe EP300 mutations, which predict a truncated protein, in 6(3%) of 193 epithelial cancers analysed. Of these six mutations, two were in primary tumours (a colorectal cancer and a breast cancer) and four were in cancer cell lines (colorectal, breast and pancreatic). In addition, we identified a somatic in-frame insertion in a primary breast cancer and missense alterations in a primary colorectal cancer and two cell lines (breast and pancreatic). Inactivation of the second allele was demonstrated in five of six cases with truncating mutations and in two other cases. Our data show that EP300 is mutated in epithelial cancers and provide the first evidence that it behaves as a classical tumour-suppressor gene.

Journal ArticleDOI
21 Jul 2000-Cell
TL;DR: It is shown that BRCA1 can directly interact with the BRG1 subunit of the SWI/SNF complex, and p53-mediated stimulation of transcription by BRC a1 was completely abrogated by either a dominant-negative mutant of BRG 1 or the cancer-causing deletion in exon 11 of BRCa1.

Journal Article
TL;DR: A approximately 630-kb lung cancer homozygous deletion region harboring one or more tumor suppressor genes (TSGs) on chromosome 3p21 is defined and several of the genes in the region are excluded as classical tumor suppressors for sporadic lung cancer.
Abstract: We used overlapping and nested homozygous deletions, contig building, genomic sequencing, and physical and transcript mapping to further define a approximately 630-kb lung cancer homozygous deletion region harboring one or more tumor suppressor genes (TSGs) on chromosome 3p21.3. This location was identified through somatic genetic mapping in tumors, cancer cell lines, and premalignant lesions of the lung and breast, including the discovery of several homozygous deletions. The combination of molecular manual methods and computational predictions permitted us to detect, isolate, characterize, and annotate a set of 25 genes that likely constitute the complete set of protein-coding genes residing in this approximately 630-kb sequence. A subset of 19 of these genes was found within the deleted overlap region of approximately 370-kb. This region was further subdivided by a nesting 200-kb breast cancer homozygous deletion into two gene sets: 8 genes lying in the proximal approximately 120-kb segment and 11 genes lying in the distal approximately 250-kb segment. These 19 genes were analyzed extensively by computational methods and were tested by manual methods for loss of expression and mutations in lung cancers to identify candidate TSGs from within this group. Four genes showed loss-of-expression or reduced mRNA levels in non-small cell lung cancer (CACNA2D2/alpha2delta-2, SEMA3B [formerly SEMA(V), BLU, and HYAL1] or small cell lung cancer (SEMA3B, BLU, and HYAL1) cell lines. We found six of the genes to have two or more amino acid sequence-altering mutations including BLU, NPRL2/Gene21, FUS1, HYAL1, FUS2, and SEMA3B. However, none of the 19 genes tested for mutation showed a frequent (>10%) mutation rate in lung cancer samples. This led us to exclude several of the genes in the region as classical tumor suppressors for sporadic lung cancer. On the other hand, the putative lung cancer TSG in this location may either be inactivated by tumor-acquired promoter hypermethylation or belong to the novel class of haploinsufficient genes that predispose to cancer in a hemizygous (+/-) state but do not show a second mutation in the remaining wild-type allele in the tumor. We discuss the data in the context of novel and classic cancer gene models as applied to lung carcinogenesis. Further functional testing of the critical genes by gene transfer and gene disruption strategies should permit the identification of the putative lung cancer TSG(s), LUCA, Analysis of the approximately 630-kb sequence also provides an opportunity to probe and understand the genomic structure, evolution, and functional organization of this relatively gene-rich region.

Journal Article
TL;DR: It is reported that methylation in the promoter region of this gene constitutes an alternative mechanism for gene inactivation in colon and other tumors of the gastrointestinal tract and underscores the importance of the APC pathway in gastrointestinal tumorigenesis.
Abstract: Germ-line mutations in the tumor suppressor gene APC are associated with hereditary familial adenomatous polyposis (FAP), and somatic mutations are common in sporadic colorectal tumors. We now report that methylation in the promoter region of this gene constitutes an alternative mechanism for gene inactivation in colon and other tumors of the gastrointestinal tract. The APC promoter is hypermethylated in 18% of primary sporadic colorectal carcinomas (n = 108) and adenoma (n = 48), and neoplasia with APC methylation fails to express the APC transcript. Methylation affects only wild-type APC in 95% of cases and is not observed in tumors from FAP patients who have germ-line APC mutations. As with APC mutation, aberrant APC methylation occurs early in colorectal carcinogenesis. When other tumor types are analyzed (n = 208), methylation of the APC promoter is not restricted to the colon but is present in tumors originating elsewhere in the gastrointestinal tract but rarely in other tumors. Our data suggest that hypermethylation of APC provides an important mechanism for impairing APC function and further underscores the importance of the APC pathway in gastrointestinal tumorigenesis.

Journal Article
TL;DR: A statistically significant correlation between the presence of DAP-kinase gene promoter hypermethylation and lymph node involvement and advanced disease stage is detected and represents a promising serum marker for monitoring affected patients.
Abstract: Promoter hypermethylation is an important pathway for repression of gene transcription in cancer cells. We analyzed aberrant DNA methylation at four genes in primary tumors from 95 head and neck cancer patients and then used the presence of this methylation as a marker for cancer cell detection in serum DNA. These four genes were tested by methylation-specific PCR and included: p16 (CDKN2A), O6-methylguanine-DNA-methyltransferase, glutathione S-transferase P1, and death-associated protein kinase (DAP-kinase). Fifty-five % (52 of 95) of the primary tumors displayed promoter hypermethylation in at least one of the genes studied: 27% (26/95) at p16, 33% (31 of 95) at O6-methylguanine-DNA-methyltransferase; and 18% (17 of 92) at DAP-kinase. No promoter hypermethylation was observed at the glutathione S-transferase P1 gene promoter. We detected a statistically significant correlation between the presence of DAP-kinase gene promoter hypermethylation and lymph node involvement (P = 0.014) and advanced disease stage (P = 0.016). In 50 patients with paired serum available for epigenetic analysis, the same methylation pattern was detected in the corresponding serum DNA of 21 (42%) cases. Among the patients with methylated serum DNA, 5 developed distant metastasis compared with the occurrence of metastasis in only 1 patient negative for serum promoter hypermethylation (P = 0.056). Promoter hypermethylation of key genes in critical pathways is common in head and neck cancer and represents a promising serum marker for monitoring affected patients.

Journal ArticleDOI
TL;DR: In this article, a family of intracellular mediators, the Smads, has been identified for understanding mechanisms of subversion of TGF-beta signaling by tumor cells.
Abstract: Signaling from transforming growth factor-beta (TGF-beta) through its unique transmembrane receptor serine-threonine kinases plays a complex role in carcinogenesis, having both tumor suppressor and oncogenic activities. Tumor cells often escape from the antiproliferative effects of TGF-beta by mutational inactivation or dysregulated expression of components in its signaling pathway. Decreased receptor function and altered ratios of the TGF-beta type I and type II receptors found in many tumor cells compromise the tumor suppressor activities of TGF-beta and enable its oncogenic functions. Recent identification of a family of intracellular mediators, the Smads, has provided new paradigms for understanding mechanisms of subversion of TGF-beta signaling by tumor cells. In addition, several proteins recently have been identified that can modulate the Smad-signaling pathway and may also be targets for mutation in cancer. Other pathways such as various mitogen-activated protein kinase cascades also contribute substantially to TGF-beta signaling. Understanding the interplay between these signaling cascades as well as the complex patterns of cross-talk with other signaling pathways is an important area of investigation that will ultimately contribute to understanding of the bifunctional tumor suppressor/oncogene role of TGF-beta in carcinogenesis.

Journal ArticleDOI
22 Jun 2000-Nature
TL;DR: It is shown that p53 messenger RNA levels are low in a large proportion of breast tumours and loss of expression of p53 in human breast cancer may be primarily due to lack ofexpression of HOXA5.
Abstract: Expression of the p53 gene protects cells against malignant transformation1,2. Whereas control of p53 degradation has been a subject of intense scrutiny, little is known about the factors that regulate p53 synthesis1,2. Here we show that p53 messenger RNA levels are low in a large proportion of breast tumours. Seeking potential regulators of p53 transcription, we found consensus HOX binding sites3,4 in the p53 promoter5. Transient transfection of Hox/HOXA5 activated the p53 promoter. Expression of HOXA5 in epithelial cancer cells expressing wild-type p53, but not in isogenic variants lacking the p53 gene6, led to apoptotic cell death. Moreover, breast cancer cell lines and patient tumours display a coordinate loss of p53 and HOXA5 mRNA and protein expression. The HOXA5 promoter region was methylated in 16 out of 20 p53-negative breast tumour specimens. We conclude that loss of expression of p53 in human breast cancer may be primarily due to lack of expression of HOXA5.

Journal ArticleDOI
TL;DR: The data suggest that the tumor suppressor activity of maspin may depend in large part on its ability to inhibit angiogenesis and raise the possibility that maspIn and similar serpins may be excellent leads for the development of drugs that modulateAngiogenesis.
Abstract: Maspin, a unique member of the serpin family, is a secreted protein encoded by a class II tumor suppressor gene whose downregulation is associated with the development of breast and prostate cancers. Overexpression of maspin in breast tumor cells limits their growth and metastases in vivo. In this report we demonstrate that maspin is an effective inhibitor of angiogenesis. In vitro, it acted directly on cultured endothelial cells to stop their migration towards basic fibroblast growth factor and vascular endothelial growth factor and to limit mitogenesis and tube formation. In vivo, it blocked neovascularization in the rat cornea pocket model. Maspin derivatives mutated in the serpin reactive site lost their ability to inhibit the migration of fibroblasts, keratinocytes, and breast cancer cells but were still able to block angiogenesis in vitro and in vivo. When maspin was delivered locally to human prostate tumor cells in a xenograft mouse model, it blocked tumor growth and dramatically reduced the density of tumor-associated microvessels. These data suggest that the tumor suppressor activity of maspin may depend in large part on its ability to inhibit angiogenesis and raise the possibility that maspin and similar serpins may be excellent leads for the development of drugs that modulate angiogenesis.

Journal ArticleDOI
TL;DR: It is demonstrated that the activity of ILK is constitutively elevated in a serum- and anchorage-independent manner in PTEN-mutant cells, and transfection of wild-type (WT) PTEN into these cells inhibits ILK activity, indicating that inhibition ofILK may be of significant value inPTEN-Mutant tumor therapy.
Abstract: PTEN is a tumor suppressor gene located on chromosome 10q23 that encodes a protein and phospholipid phosphatase. Somatic mutations of PTEN are found in a number of human malignancies, and loss of expression, or mutational inactivation of PTEN, leads to the constitutive activation of protein kinase B (PKB)/Akt via enhanced phosphorylation of Thr-308 and Ser-473. We recently have demonstrated that the integrin-linked kinase (ILK) can phosphorylate PKB/Akt on Ser-473 in a phosphoinositide phospholipid-dependent manner. We now demonstrate that the activity of ILK is constitutively elevated in a serum- and anchorage-independent manner in PTEN-mutant cells, and transfection of wild-type (WT) PTEN into these cells inhibits ILK activity. Transfection of a kinase-deficient, dominant-negative form of ILK or exposure to a small molecule ILK inhibitor suppresses the constitutive phosphorylation of PKB/Akt on Ser-473, but not on Thr-308, in the PTEN-mutant prostate carcinoma cell lines PC-3 and LNCaP. Transfection of dominant-negative ILK and WT PTEN into these cells also results in the inhibition of PKB/Akt kinase activity. Furthermore, dominant-negative ILK or WT PTEN induces G1 phase cycle arrest and enhanced apoptosis. Together, these data demonstrate a critical role for ILK in PTEN-dependent cell cycle regulation and survival and indicate that inhibition of ILK may be of significant value in PTEN-mutant tumor therapy.

Journal Article
TL;DR: In this paper, the authors used a sensitive and reproducible method of measuring mRNA expression to compare basal levels of 10 transcripts in the 60 celllines of the National Cancer Institute's in vitroanticancer drug screen (NCI-ACDS) under conditions of exponential growth.
Abstract: We have used a sensitive and reproducible method of measuring mRNA expression to compare basal levels of 10 transcripts in the 60 cell lines of the National Cancer Institute’s in vitro anticancer drug screen (NCI-ACDS) under conditions of exponential growth. The strongest correlation among these target genes was between levels of CIP1/WAF1 and BAX. Levels of the three major growth arrest and DNA damage-inducible gene transcripts, (GADD34, GADD45, and GADD153), which are coordinately regulated in response to many stresses, were also correlated across the 60 cell lines. Although the stress induction of several of the transcripts studied here has been shown to be dependent on wild-type p53 status, basal levels of only CIP1/WAF1 and BAX were found to correlate with p53 status. As expected, basal expression of O6 alkyl guanine alkyl-transferase correlated well with resistance to O6-alkylating agents (r = −0.44) but not with resistance to alkylators with different mechanisms of action (r = −0.04). When basal expression levels of the 10 genes across the NCI-ACDS panel were compared with sensitivities to a panel of 122 standard chemotherapy agents, the most striking relationship was a strong negative correlation (r = −0.3) between basal BCL-X levels and sensitivity to drugs in all of the mechanistic classes except one class of antimetabolites. Sensitivities to a maximally diverse sample of 1200 from 70,000 compounds tested in the NCI-ACDS of agents were also negatively correlated with BCL-X levels. A novel application of factor analysis revealed that the newly discovered associations were independent of previously demonstrated sensitivity factors such as p53 mutation status and native population doubling time. A similar pattern of correlation was seen for Bcl-XL protein levels. Conversely, BAX and BCL2, two other genes associated with regulation of apoptosis, showed no overall correlation with drug sensitivities. This suggests that BCL-X may play a unique role in general resistance to cytotoxic agents, with the cell lines demonstrating relative resistance to 70,000 cytotoxic agents in the NCI-ACDS being characterized by high BCL-X expression.

Journal ArticleDOI
TL;DR: The progress on molecular studies of tumor progression and metastasis of the past 20 years is reviewed and the future direction in this field of science is discussed.
Abstract: It is now widely accepted that cancer is attributed to the accumulation of genetic alterations in cells. Thus, to understand the molecular mechanisms of cancer metastasis, it is indispensable to identify the genes whose alterations accumulate during cancer progression as well as the genes whose expression is responsible for the acquisition of metastatic potential in cancer cells. Molecular analyses of cancer cells in various stages of progression have revealed that alterations in tumor suppressor genes and oncogenes accumulate during tumor progression and correlate with the clinical aggressiveness of cancer. Comparative analyses of gene expression profiles between metastatic and non-metastatic cells have revealed that various genes are differentially expressed in association with the metastatic potential of cancer cells. A number of genes have been also identified as having functions in inducing or suppressing metastasis in experimental models. However, the association between causative genetic alterations and resulting phenotypic alterations with respect to the metastatic potential of cancer cells is not fully understood. Therefore, elucidation of genotype-phenotype correlation will be required to further understand a complex process of metastasis. Here, I review the progress on molecular studies of tumor progression and metastasis of the past 20 years and discuss the future direction in this field of science.

Journal ArticleDOI
TL;DR: It is shown that AKT activation and activity are markedly increased in androgen-independent, prostate-specific antigen-positive prostate cancer cells (LNAI cells) established from xenograft tumors of the androgens-dependent LNCaP cell line, suggesting increased AKT activity in prostate tumor progression and androgen independence.

Journal ArticleDOI
TL;DR: Findings constitute persuasive genetic evidence that Snf5, a core member of the Swi/Snf chromatin-remodeling complex, functions as a tumor suppressor gene, and, moreover, snf5 heterozygotes provide a murine model of this lethal pediatric cancer.
Abstract: Malignant rhabdoid tumor (MRT) is an aggressive, highly lethal cancer of young children. Tumors occur in various locations, including kidney, brain, and soft tissues. Despite intensive therapy, 80% of affected children die, often within 1 year of diagnosis. The majority of MRT samples and cell lines have sustained biallelic inactivating mutations of the hSNF5 (integrase interactor 1) gene, suggesting that hSNF5 may act as a tumor suppressor. We sought to examine the role of Snf5 in development and cancer in a murine model. Here we report that Snf5 is widely expressed during embryogenesis with focal areas of high-level expression in the mandibular portion of the first branchial arch and central nervous system. Homozygous knockout of Snf5 results in embryonic lethality by embryonic day 7, whereas heterozygous mice are born at the expected frequency and appear normal. However, beginning as early as 5 weeks of age, heterozygous mice develop tumors consistent with MRT. The majority of tumors arise in soft tissues derived from the first branchial arch. Our findings constitute persuasive genetic evidence that Snf5, a core member of the Swi/Snf chromatin-remodeling complex, functions as a tumor suppressor gene, and, moreover, Snf5 heterozygotes provide a murine model of this lethal pediatric cancer.

Journal ArticleDOI
TL;DR: It is proposed that MAGI-2 improves the efficiency of PTEN signaling through assembly of a multiprotein complex at the cell membrane through an interaction between the PDZ-binding motif ofPTEN and the second PDZ domain of MAGi-2.
Abstract: PTEN is a tumor suppressor gene mutated in human cancers. Although many mutations target the phosphatase domain, others create a truncated protein lacking the C-terminal PDZ-binding motif or a protein that extends beyond the PDZ-binding motif. Using the yeast two-hybrid system, we isolated a membrane-associated guanylate kinase family protein with multiple PDZ domains [AIP-1 (atrophin interacting protein 1), renamed MAGI-2 (membrane associated guanylate kinase inverted-2)]. MAGI-2 contains eight potential protein–protein interaction domains and is localized to tight junctions in the membrane of epithelial cells. PTEN binds to MAGI-2 through an interaction between the PDZ-binding motif of PTEN and the second PDZ domain of MAGI-2. MAGI-2 enhances the ability of PTEN to suppress Akt activation. Furthermore, certain PTEN mutants have reduced stability, which is restored by adding the minimal PDZ-binding motif back to the truncated protein. We propose that MAGI-2 improves the efficiency of PTEN signaling through assembly of a multiprotein complex at the cell membrane.

Journal ArticleDOI
TL;DR: Mice lacking SNF5 protein stop developing at the peri‐implantation stage, showing that the SWI/SNF complex is essential for early development and viability of early embryonic cells, and the wild‐type allele was lost, providing further evidence thatSNF5 functions as a tumor suppressor gene in certain cell types.
Abstract: The assembly of eukaryotic DNA into nucleosomes and derived higher order structures constitutes a barrier for transcription, replication and repair. A number of chromatin remodeling complexes, as well as histone acetylation, were shown to facilitate gene activation. To investigate the function of two closely related mammalian SWI/SNF complexes in vivo, we inactivated the murine SNF5/INI1 gene, a common subunit of these two complexes. Mice lacking SNF5 protein stop developing at the peri-implantation stage, showing that the SWI/SNF complex is essential for early development and viability of early embryonic cells. Furthermore, heterozygous mice develop nervous system and soft tissue sarcomas. In these tumors the wild-type allele was lost, providing further evidence that SNF5 functions as a tumor suppressor gene in certain cell types.

Journal Article
TL;DR: The data show that NKX3.1 expression is highly, but not exclusively, specific for the prostate, and is strongly associated with hormone-refractory disease and advanced tumor stage in prostate cancer.
Abstract: NKX3.1 is a prostate-specific homeobox gene located on chromosome 8p21. In the mouse, Nkx3.1 has growth-suppressive and differentiating effects on prostatic epithelium. Mutations of the coding region of NKX3.1 were not found in human prostate cancer, failing to support the notion that NKX3.1 was a tumor suppressor gene. To study the expression o NKX3.1 protein in human tissues and prostate cancer, we derived a rabbit antiserum against purified recombinant NKX3.1. Among normal human tissues, NKX3.1 expression was seen in testis, in rare pulmonary mucous glands, and in isolated regions of transitional epithelium of the ureter. NKX3.1 was uniformly expressed in nuclei of normal prostate epithelial cells in 61 histological sections from radical prostatectomy specimens. We analyzed 507 samples of neoplastic prostate epithelium, most of which were contained on a tissue microarray that contained samples from different stages of prostatic neoplasia. We observed complete loss of NKX3.1 expression in 5% of benign prostatic hyperplasias, 20% of high-grade prostatic intraepithelial neoplasias, 6% of T1a/b samples, 22% of T3/4 samples, 34% of hormone-refractory prostate cancers, and 78% of metastases. Our data show that NKX3.1 expression is highly, but not exclusively, specific for the prostate. Loss of NKX3.1 expression is strongly associated with hormone-refractory disease and advanced tumor stage in prostate cancer (P < 0.0001).

Journal ArticleDOI
TL;DR: A genetic screen aimed to bypass the rapid and tight senescence arrest of primary fibroblasts deficient for the oncogene Bmi1 found TBX2 to be amplified in a subset of primary human breast cancers, indicating that it might contribute to breast cancer development.
Abstract: To identify new immortalizing genes with potential roles in tumorigenesis, we performed a genetic screen aimed to bypass the rapid and tight senescence arrest of primary fibroblasts deficient for the oncogene Bmi1. We identified the T-box member TBX2 as a potent immortalizing gene that acts by downregulating Cdkn2a (p19(ARF)). TBX2 represses the Cdkn2a (p19(ARF)) promoter and attenuates E2F1, Myc or HRAS-mediated induction of Cdkn2a (p19(ARF)). We found TBX2 to be amplified in a subset of primary human breast cancers, indicating that it might contribute to breast cancer development.

Journal Article
TL;DR: The results establish pten+/- mice as an excellent animal model system for the investigation of PTEN-related hamartoma syndromes, as well as the role ofPTEN in breast and endometrial carcinogenesis.
Abstract: PTEN is one of the most commonly mutated tumor suppressor genes in human cancer. PTEN mutations have been implicated in the development of a variety of human neoplasia, including high-grade glioblastoma, prostate, breast, endometrial, and thyroid carcinoma. Germ-line mutations of PTEN cause Cowden's syndrome (CS), a multiple hamartoma condition resulting in increased susceptibility for the development of cancer. When more than 6 months old, pten+/- mice develop a range of tumors, partially resembling the spectrum of neoplasia observed in CS patients. One-half (32 of 65) of pten+/- females developed breast tumors, whereas all (65 of 65) of the females had endometrial hyperplasia, and there was a high incidence (14 of 65) of endometrial cancer. Hamartoamous tumors of the gastrointestinal tract, as well as prostate and adrenal neoplasia, were also frequently observed. Significantly, the spectrum of neoplasia observed in pten+/- mice partially overlaps with the types of tumors frequently detected in CS patients. The majority of tumors in pten+/- mice exhibit loss of heterozygosity at the pten locus, which indicates the importance for loss of PTEN function in tumor formation. Consistent with the role of PTEN in negative regulation of PKB/Akt phosphorylation and activity, pten loss of heterozygosity is accompanied by hyperphosphorylation of PKB/Akt in tumors. Taken together, our results establish pten+/- mice as an excellent animal model system for the investigation of PTEN-related hamartoma syndromes, as well as the role of PTEN in breast and endometrial carcinogenesis.

Journal Article
TL;DR: Data from a panel of tumor cell lines screened support the model that BRG1 may function as a tumor suppressor and strengthen the hypothesis that the regulation of gene expression through chromatin remodeling is critical for cancer progression.
Abstract: Human BRG1 is a component of the evolutionarily conserved SWI-SNF chromatin remodeling complex. BRG1 has been implicated in growth control through its interaction with the tumor suppressor pRb and may consequently serve as a negative regulator of proliferation. Postulating that BRG1 may itself be a tumor suppressor gene, we screened a panel of tumor cell lines to determine whether the gene is targeted for mutation. We report that the COOH-terminal region of BRG1 is homozygously deleted in two carcinoma cell lines, prostate TSU-Pr1 and lung A-427. In addition, biallelic inactivations of BRG1 were observed in four other cell lines derived from carcinomas of the breast, lung, pancreas, and prostate; their mutations in BRG1 included three frameshift lesions and one nonsense lesion. Point mutations were also discovered in a number of other cell lines, however in most cases any effect of these mutations on BRG1 function remains to be established. A variety of different mutations within BRG1, in several cell lines, suggest that BRG1 may be targeted for disruption in human tumors. Significantly, reintroduction of BRG1 into cells lacking BRG1 expression was sufficient to reverse their transformed phenotype inducing growth arrest and a flattened morphology. These data strongly support the model that BRG1 may function as a tumor suppressor and strengthen the hypothesis that the regulation of gene expression through chromatin remodeling is critical for cancer progression. It will be important to confirm these observations in primary tumors.

Journal ArticleDOI
31 Aug 2000-Nature
TL;DR: It is shown that APC contains highly conserved nuclear export signals 3′ adjacent to the mutation cluster region that enable it to exit from the nucleus, and evidence that β-catenin accumulates in the nucleus as a result.
Abstract: The adenomatous polpyposis coli (APC) protein is mutated in most colorectal tumours. Nearly all APC mutations are truncations, and many of these terminate in the mutation cluster region located halfway through the protein. In cancer cells expressing mutant APC, beta-catenin is stabilized and translocates into the nucleus to act as a transcriptional co-activator of T-cell factor. During normal development, APC also promotes the destabilization of beta-catenin and Drosophila Armadillo. It does so by binding to the Axin complex which earmarks beta-catenin/Armadillo for degradation by the proteasome pathway. APC has a regulatory role in this process, which is poorly understood. Here we show that APC contains highly conserved nuclear export signals 3' adjacent to the mutation cluster region that enable it to exit from the nucleus. This ability is lost in APC mutant cancer cells, and we provide evidence that beta-catenin accumulates in the nucleus as a result. Thus, the ability of APC to exit from the nucleus appears to be critical for its tumour suppressor function.